ZlibValidation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen 1.9.5

Tue Apr 15 2025 20:55:05

1 ZlibValidation 1
1.1 Description 1
1.2 Table of Contents 1
1.3 Motivation
1.4 Installation L

1.4.1 Prerequisites e
1.4.2 Optional Pre-requisites.
1.4.3 Building from Source (Recommended Method)
1.4.4 Running ZlibValidation
1.4.5 (Optional) Adding to your PATH
1.5 Help Message / Features
1.6 Example Usage e

1.7 Documentation and Reference Manual

L R~ R . . C N CC R L R \© R |G R |G O]

=
oo
—_
0
o
=
(0]
-n
c
>
(@]
jm
o
>S5
L
=
<
—
(en
=2
5]
=
(0]
\
(6]

2 Development Diary 7
2.12025-01 7
2.1.12025-01-27 e 7
2.1.22025-01-28 7
2.22025-02
2.2.12025-02-01
2.2.22025-02-10
2.2.32025-02-11
224 2025-02-14 L
2.252025-02-15
2.2.6 2025-02-17
2.2.7 2025-02-18 e
2.2.82025-02-19

© O W YW W o0 © o o0 o

2.2.92025-02-20o
2.2.10 2025-02-25 10
2211 2025-02-26 10

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.2.12 2025-02-27 10
2.2.132025-02-28 10
2.32025-03 . . .o 11
2.3.12025-03-01 11
2.3.22025-03-07 11
2.3.32025-03-10 11
2.3.42025-03-14 11
2.3.52025-03-15 12
2.3.62025-03-16 12
2.3.72025-03-17 e 13
2.3.82025-03-18 13
2.3.92025-03-19 14
2.3.10 2025-03-21 14
2.3.11 2025-03-24 14
2.3.122025-03-25 14
2.3.132025-03-26 15
2.3.14 2025-03-27 15
2.3.152025-03-28 16
2.3.16 2025-03-29o 17
2.3.17 2025-03-30 17
2.3.18 2025-03-31 18
2.42025-04 . . . 19
2.4.12025-04-01 19
2.422025-04-02 21
24.32025-04-05 22
2.4.42025-04-07 23
2.452025-04-10 23
24.6 2025-04-15 23

3 Hierarchical Index 25
3.1 Class Hierarchy e 25
4 Class Index 27
4.1 Class List o 27

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

5 File Index
5.1 File List

6 Class Documentation

6.1 Attributeslterator Class Reference.
6.1.1 Detailed Description
6.1.2 Constructor & Destructor Documentation
6.1.2.1 Attributeslterator()

6.1.2.2 ~Attributeslterator() L

6.1.3 Member Function Documentation L.
6.1.31end()
6.1.3.2get()
6.1.3.3next()

6.1.4 Member Data Documentation
6.1.4.1 attr__

6.1.4.2 attrs__ e

6.1.4.3 err_ e

6.2 CellExtractor Class Reference
6.2.1 Detailed Description
6.2.2 Constructor & Destructor Documentation
6.2.2.1 CellExtractor()

6.2.3 Member Function Documentation L.
6.2.3.1 foundTargetCell()
6.2.32handle()

6.2.4 Member Data Documentation
6.2.4.1 foundTarget_

6.2.4.2 targetCell_

6.3 CellPrinter Class Reference
6.3.1 Detailed Description
6.3.2 Constructor & Destructor Documentation
6.3.2.1 CellPrinter()

6.3.3 Member Function Documentation L.
6.3.3.1 handle()

6.3.4 Member Data Documentation

29
29

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.3.4.1 foundTarget__ 39
0.3.420ut_ 39
6.3.43 targetCell_ 39

6.4 Gatelnfo Struct Reference L 39
6.4.1 Detailed Description 40
6.4.2 Member Data Documentation L 40
6.4.2.1 gateTypeName 40
6.4.2.2 inputSignals 40
6.423kind 40
6.4.2.4 outputSignal 40

6.5 Groupslterator Class Reference 41
6.5.1 Detailed Description 41
6.5.2 Constructor & Destructor Documentation 41
6.5.2.1 Groupslterator() 41
6.5.2.2 ~Groupslterator() 41

6.5.3 Member Function Documentation 42
6.531end() 42
6.53.2get() 42
6.5.3.3 next() 43

6.5.4 Member Data Documentation 43
6.5 4.1 err_ 43
6.5.4.2 Group_ 43
0.5.4.3 Groups_ 43

6.6 LibAttribute Class Reference 44
6.6.1 Detailed Description 44
6.6.2 Constructor & Destructor Documentation 44
6.6.2.1 LibAttribute() 44
6.6.2.2 ~LibAttribute() 45

6.6.3 Member Function Documentation L. 45
6.6.3.1 getBoolean() 45
6.6.3.2 getFloat() 45
6.6.3.3 getInt() 46
6.6.3.4 getName() 46

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.6.3.5 getString() 47
6.6.3.6 getValues() 47
6.6.3.7 isComplex() 47

6.6.4 Member Data Documentation 48
6.6.4.1 attr_ 48
0.0.4.2 err_ 48

6.7 LibFile Class Reference 48
6.7.1 Detailed Description 50
6.7.2 Constructor & Destructor Documentation 50
6.7.2.1 LibFile() 50
6.7.2.2 ~LibFile() 50

6.7.3 Member Function Documentation 51
6.7.3.1 checkTimingArcMonotonicity() 51
6.7.3.2 generateRCLines() 52
6.7.33 logic() 53
6.7.3.4 modify() 55
6.7.3.5 modifySpiceNetlist() 55
6.7.3.6 mono() 57
6.7.3.7 parse() 59
6.738read() 61
6.7.3.9spice() 62
6.7.3.10 splitString() 64
6.7.3 11 supercell() 65
6.7.3.12 verilog() 67
6.7.3.13 writeJsonToFile() 69

6.7.4 Member Data Documentation 69
6.7.4.1 basename_ L 69
0.7.4.2 €rr_ s 70
6.7.43 filename_o 70
6.7.4.4 filepath_ 70
6.7.4.5 jsonname_ 70
6.74.6 lib_json_ 70
6.7.4.7 libname__ 71

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

vi

6.7.4.8 logger_ 71
6.7.4.9 loggername_ L 71
6.7.4.10 process_ e 71
6.7.4.11 temperature_ 71
6.7.4.12 voltage_ 72

6.8 LibGroup Class Reference 72
6.8.1 Detailed Description 72
6.8.2 Constructor & Destructor Documentation 72
6.8.2.1 LibGroup() 73
6.8.2.2 ~LibGroup() 73

6.8.3 Member Function Documentation L. 73
6.8.3.1 getAttrs() 73
6.8.3.2 getGroups() 74
6.8.3.3 getName() 74
6.83.4 getType()« . 75

6.8.4 Member Data Documentation 75
6.8.4.1 err_ e 75
06.8.4.2 group_ 75

6.9 LibraryComparator Class Reference 75
6.9.1 Detailed Description 76
6.9.2 Constructor & Destructor Documentation 77
6.9.2.1 LibraryComparator() 77

6.9.3 Member Function Documentation L. 78
6.9.3.1 compareCell() 78
6.9.3.2 compareLut() 79
6.9.3.3 comparePin() 81
6.9.3.4 compareTimingArc() 82
6.9.3.5 generateReport() 83

6.9.4 Member Data Documentation 84
6.9.4.1 abstol_ 84
6.9.4.2 COMP_jJSON_ 84
6.9.43 comp_lib_path_ 84
6.9.4.4 ref_json_ 84

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

vii

6.945ref_lib_path_ 85
6.9.4.6reltol_ 85

6.10 LogicComparator Class Reference 85
6.10.1 Detailed Description e 86
6.10.2 Constructor & Destructor Documentation 36
6.10.2.1 LogicComparator() 86

6.10.3 Member Function Documentation L. 86
6.10.3.1 compareCellLogic() 86
6.10.3.2 compareSingleExpressionPair() o oL 88
6.10.3.3 extractVariables() Lo 90
6.10.3.4 generateReport() 91
6.10.3.5 logic() 93
6.10.3.6 preprocessExpression() 94

6.10.4 Member Data Documentation 95
6.10.4.1 all_pin_results_ 95
6.10.4.2 cell_name_o 95
6.10.4.3 comp_outpin_map_ 96
6.10.4.4 ref_outpin_map_ 96

6.11 LogicExtractor Class Reference 96
6.11.1 Detailed Description 98
6.11.2 Constructor & Destructor Documentation 98
6.11.2.1 LogicExtractor() 98

6.11.3 Member Function Documentation L. 98
6.11.3.1 deriveLogicRecursive() 98
6.11.3.2 formatExpression() Lo 100
6.11.3.3 getExtractedGates() 101
6.11.3.4 getinternalWires() 101
6.11.3.5 getlogicExpressions() 101
6.11.3.6 getPrimarylnputs() 102
6.11.3.7 getPrimaryOutputs() 103
6.11.3.8 handle() [1/51 103
6.11.3.9 handle() t2/51 103
6.11.3.10 handle() 13/51 104

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

viii

6.11.3.11 handle() ta/51 105
6.11.3.12 handle() [5/51 106

6.11.4 Member Data Documentation 106
6.11.4.1 gateOutputDrivers_ L 106
6.11.4.2 inTargetModule_ 107
6.11.43 internalWires_ 107
6.11.44 logicCache_ 107
6.11.4.5 parsingComplete_ 107
6.11.4.6 portDirections_ 107
6.11.4.7 primarylnputs_ 108
6.11.4.8 primaryQutputs_ 108
6.11.4.9 targetCell_ 108

6.12 ModuleRewriter Class Reference 108
6.12.1 Detailed Description 109
6.12.2 Constructor & Destructor Documentation 110
6.12.2.1 ModuleRewriter() 110

6.12.3 Member Function Documentation L. 110
6.12.3.1 handle() [1/21 110
6.12.3.2 handle() r2/21 110

6.12.4 Member Data Documentation 111
6.12.4.1 cellName__. 111
6.12.42 depth_ 111
6.12.4.3 inputPins_ 111
6.12.4.4 instance_count__ 111
6.12.4.5 logger_ 112
6.12.4.6 moduleName__ 112
6.12.4.7 outputPins_ 112
6.12.4.8 portinfoMap_ 112

6.13 PinComparisonResult Struct Reference 112
6.13.1 Detailed Description 113
6.13.2 Member Data Documentationo 113
6.13.2.1 are_equivalent 113
6.13.2.2 comp_compiles 113

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.13.2.3 comp_expr_processed 114
0.13.2.4 COMP_EXPr_raW v v i it e e e e e 114
6.13.2.5 comp_truth_table 114
6.13.2.6 comparison_possibleo 114
6.13.2.7 error_messageo e 114
6.13.2.8 pin_name 115
6.13.29 ref_compiles 115
6.13.2.10 ref_expr_processed 115
6.13.2.11 ref_expr_raw 115
6.13.2.12 ref_truth_table 115

6.14 Valueslterator Class Reference 116
6.14.1 Detailed Description 116
6.14.2 Constructor & Destructor Documentation 116
6.14.2.1 Valueslterator() 116
6.14.2.2 ~Valueslterator() 117

6.14.3 Member Function Documentation 117
6.143.1end() 117
6.1432next() 117

6.14.4 Member Data Documentation 118
6.144.1bool_ 118
6.14.4.2 err_ . . . e 118
0.14.4.3 €XPrp_ . . . o 118
6.14.4.4 float__o 118
6.144510int_ L 118
0.14.4.6 Str__ 119
6.14.4.7 values__ 119
6.14.4.8 vtype_ e 119

6.15 VerilogVisitor Class Reference 119
6.15.1 Detailed Description e 120
6.15.2 Constructor & Destructor Documentation 120
6.15.2.1 VerilogVisitor() 121

6.15.3 Member Function Documentation 121
6.15.3.1 handle() [1/51 121

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15.3.2 handle() t2/51 121

6.15.3.3 handle() [3/51 121

6.15.3.4 handle() ta/s1 122

6.15.3.5 handle() ts/51 122

6.15.4 Member Data Documentation 122
6.15.4.1depth_ 123

6.15.4.2 inTargetModule_ 123

6.15.43 targetCell_ 123

7 File Documentation 125
7.1 doc/ChangeLog.md File Reference 125
7.2 include/Iterators.hpp File Reference 125
7.3 lterators.hpp 126
7.4 include/json_utils.hpp File Reference 127
7.4.1 Typedef Documentation 128
TALLJson . . 128

7.4.2 Function Documentation L 129
7.4.2.1 generateCelldson() 129

7.4.22 generateLutdson() 131

7.4.2.3 generatePinJson() 132

7.4.2.4 generatePowerJson() L 135

7.5 json_utils.hpp 136
7.6 include/LibAttribute.hpp File Reference 137
7.7 LibAttribute.hpp o 138
7.8 include/LibFile.hpp File Reference 139
7.8.1 Typedef Documentation 140

7.8. 1.1 Json . ..o 140

7.9 LibFile.hpp 140
7.10 include/LibFileOperations.hpp File Reference 141
7.10.1 Function Documentation 142
7.10.1.1 compareLibFiles() 143

7.10.1.2 funcLibFile() 144

7.10.1.3 monoCheckLibFile() 146

7.10.1.4 parseLibFile() 148

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

xi

7.10.1.5 printinfo() 150

7.10.1.6 spiceLibFile() 151

7.10.1.7 supercellLibFile() 152

7.10.1.8 verilogLibFile() 155

7.11 LibFileOperations.hpp 156
7.12 include/LibGroup.hpp File Reference 157
7.13 LibGroup.hpp 158
7.14 include/LibraryComparator.hpp File Reference 159
7.14.1 Typedef Documentation 160
71411 Json . . o 160

7.15 LibraryComparator-hpp 160
7.16 include/LogicComparator.hpp File Reference 161
7.17 LogicComparator.hpp 162
7.18 include/LogicExtractor.hpp File Reference 163
7.18.1 Function Documentation 164
7.18.1.1 extractAndPrintNetlistinfo()o 164

7.18.1.2 extractLogicFromVerilog()o L 165

7.19 LogicExtractor.hpp e 166
7.20 include/verilog_utils.hpp File Reference 168
7.20.1 Function Documentation L 169
7.20.1.1 getAST() o 169

7.21 verilog_utils.hpp 169
7.22 include/version.h File Reference 171
7.22.1 Macro Definition Documentation 171

722 1.1 APP_AUTHOR o 171

7.22.1.2 APP_CONTACT e 172

72213 APP_NAME 172

72214 APP_VERSION 172

7.22.1.5 APP_VERSION_MAJOR 172

7.22.1.6 APP_VERSION_MINOR 172

7.22.1.7 APP_VERSION_PATCH 173

7.22.1.8 BUILD_TIMESTAMP 173

T.23 version.h ..o 173

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

xii

7.24 README.md File Reference 174
7.25 src/lterators.cpp File Reference 174
T7.26 lterators.Cppo 174
7.27 src/json_utils.cpp File Reference 175
7.27.1 Function Documentation L 176
7.27.1.1 generateCelldson() 176

7.27.1.2 generateLutJson() L 178

7.27.1.3 generatePinJson() 179

7.27.1.4 generatePowerJson() L 182

7.27.1.5 generateTimingJson() 183

7.27.1.6 parseStringToVector() 185

7.28 json_utils.cpp 186
7.29 src/LibAtrribute.cpp File Reference 189
7.30 LibAtrribute.cpp 189
7.31 src/LibFile.cpp File Reference 190
7.32 LibFile.cpp o 190
7.33 src/LibFileOperations.cpp File Reference 207
7.33.1 Function Documentation 208
7.33.1.1 compareLibFiles() 208

7.33.1.2 funcLibFile() 209

7.33.1.3 monoCheckLibFile() 212

7.33.1.4 parseLibFile() 214

7.33.15 printinfo() 216

7.33.1.6 spiceLibFile() 217

7.33.1.7 supercellLibFile() 218

7.33.1.8 verilogLibFile() 221

7.34 LibFileOperations.cpp o . 222
7.35 src/LibGroup.cpp File Reference 227
7.36 LibGroup.cpp 227
7.37 src/LibraryComparator.cpp File Reference 228
7.38 LibraryComparator.cpp 228
7.39 src/LogicComparator.cpp File Reference 233
7.39.1 Function Documentation 234

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.39.1.1 isldentifier() 234
7.39.1.2isOperator() 235

7.40 LogicComparator.Cpp o v 235
7.41 src/LogicExtractor.cpp File Reference 250
7.41.1 Function Documentation 250
7.41.1.1 extractAndPrintNetlistinfo()o 250

7.41.1.2 extractLogicFromVerilog()o 251

7.42 LogicExtractor.cpp 252
7.43 src/main.cpp File Reference 261
7.43.1 Detailed Description e 262
7.43.2 Function Documentation 263
74321 main() 263

744 mMain.Ccpp e 264
7.45 src/verilog_utils.cpp File Reference 269
7.45.1 Function Documentation 269
74511 getAST() o 269

7.46 verilog_utils.cpp 270
%3l 279

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 1

ZlibValidation

1.1 Description

Command line tool to validate standard cell libraries in .1ib format.

ZlibValidation provides a suite of tools for engineers working with digital IC standard cell libraries in the
Liberty format (.lib). It helps ensure library quality, consistency, and facilitates comparison and conversion
tasks. Built with C++ for performance and leveraging robust libraries for parsing and command-line

interaction.

1.2 Table of Contents

= ZlibValidation

Description

Table of Contents

Motivation

Installation

x Prerequisites

*

Optional Pre-requisites

*

Building from Source (Recommended Method)
* Running ZlibValidation
(Optional) Adding to your PATH

*

Help Message / Features

Example Usage

Documentation and Reference Manual

* Doumentation Generation

Acknowledgements
* Core Functionality Libraries:

* Build, Documentation, and External Tools:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2 ZlibValidation

1.3 Motivation

Validating standard cell libraries (.lib) is critical in chip design, but current solutions pose challenges.
Commercial tools are expensive, locking out many users (students, startups, researchers), and their
closed-source nature prevents customization and hinders innovation. This creates a gap, especially for

those needing rapid validation within tight resource constraints.

ZlibValidation aims to fill this gap. It is a free, open-source command-line tool designed for

comprehensive and efficient .lib file validation. Our goals are to:

Lower the barrier to entry for library quality assurance.

= Provide fast, reliable checks (parsing, consistency, function, parameters, comparison).

Enable transparency, customization, and community collaboration through open source.

= Bridge the divide between academic research and industrial needs in validation technology.

1.4 Installation

ZlibValidation is designed to be easily built and run directly from source without requiring admin-
istrator (sudo) privileges on Linux systems. This makes it ideal for environments where users have

restricted permissions. The recommended installation method is building from source.

1.4.1 Prerequisites

Before you begin, ensure you have the following installed on your Linux system:

= Git: To clone the repository.

= C++ Compiler: C+-+20 standard support required (e.g., GCC >= 12). Developed with GCC
14.2.0.

= CMake: Version 3.25 or higher (versions after 4.0.0 may exhibit compatibility issues).

= Ninja (recommended) or Make: Build systems. Ninja is preferred for its speed.

1.4.2 Optional Pre-requisites

= ccache: Optional but recommended for speeding up recompilation. Install it via your package

manager (e.g., conda install conda-forge::ccache).

= lld: Optional but recommended for faster linking. Install it via your package manager (e.g., conda

install conda-forge::11d).

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

1.4 Installation 3

1.4.3 Building from Source (Recommended Method)
Follow these steps to compile ZlibValidation in your user directory:

1. Clone the repository:
git clone https://github.com/Cedar17/ZlibValidation.git
cd ZlibValidation

2. Configure the build using CMake: Create a build directory and run CMake from within it. This

keeps build files separate from your source code.
mkdir build

cd build

Use Ninja as the build system (recommended):

cmake .. -G Ninja

or if you prefer Make:

cmake .. -G "Unix Makefiles"

Note: No sudo is needed here.

3. Compile the project: Use ninja to build the executable. If you chose Make, use make instead,

the -j flag speeds up compilation by using multiple processor cores.
If you used Ninja:

ninja

or if you used Make:

make -j$(nproc) # Adjust $(nproc) or use a specific number like -j8 for multi-threading

4. Locate the Executable: Upon successful compilation, the zlibvalidation executable will be

located inside the build directory: ./build/zlibvalidation.
Check the executable version:

./zlibvalidation --version

1.4.4 Running ZlibValidation

Since we haven't performed a system-wide install (which would typically require sudo), you need to run

the executable using its path relative to your current location.

= If you are in the project's root directory (ZlibValidation/), run it like this:
./build/zlibvalidation --help

= If you are inside the build directory, run it like this:
./zlibvalidation --help

1.4.5 (Optional) Adding to your PATH

For convenience, you can temporarily add the build directory to your shell's PATH variable for the current

session:
export PATH="$PWD/build:$PATH" # Assumes you are in the ZlibValidation root directory
Now you can run it directly:

zlibvalidation -h

To make this change permanent, you can add the above line to your shell's configuration file (e.g.,

~/ .bashrc, ~/.zshrc).

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

4 ZlibValidation

1.5 Help Message / Features

ZlibValidation
Usage: ./zlibvalidation [OPTIONS] [SUBCOMMAND]
Options:
-h,--help Print this help message and exit
-v,--version Display program version information and exit
Subcommands :
parse Parse the Liberty file and write JSON to a file
mono Check the monotonicity of timing arc values
compare Compare the comparison library against the reference one and report differences
supercell Generate supercells for the given Liberty file
zlibboost Z1ibBoost - Multi-threaded Library Processing Tool
clear Clear the log, JSON, map, markdown, Verilog, SPICE files in this directory
verilog Generate Verilog file for given Liberty file
spice Generate SPICE file for given Liberty file
func Check functional equivalence of two Liberty files or Verilog files

1.6 Example Usage

See test directory. There are some shell scripts showing how to use ZlibValidation. You can

modify them to validate your own standard cell library pdk.

1.7 Documentation and Reference Manual

See https://cedarl7.github.io/ZlibValidation/ for HTML documentation and PDF reference

manual.

1.7.1 Doumentation Generation

To generate the documentation, you need to have Doxygen and Graphviz installed. You can install them
via your package manager or using conda:

conda install -c conda-forge doxygen graphviz

Then, run the following command in the root directory of the project:

doxygen Doxyfile

This will generate the documentation in the doc_doxygen directory. You can open the doc_«
doxygen/html/index.html file in your web browser to view the documentation.

Alternatively, you can generate the PDF reference manual by LaTeX.

cd doc_doxygen/latex

make

1.8 Acknowledgements

ZlibValidation leverages the power of several excellent third-party libraries, build tools, and external
utilities. We extend our sincere gratitude to the developers and communities behind these projects, which

were instrumental in building this tool:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://cedar17.github.io/ZlibValidation/

1.8 Acknowledgements 5

1.8.1 Core Functionality Libraries:

» Liberty Parser (csguth/LibertyParser):
— Purpose: Provides the core functionality for parsing the .1ib (Liberty) standard cell library
format. This open-source implementation forms the basis of our library reading capabilities.

— Integration: The source code was cloned from the repository, manually compiled into a static
library (1ibsi2dr_liberty.a), and included directly within this project's include_3rd_«
party directory.

— License: SYNOPSYS Open Source License Version 1.0.
= CLI11:
— Purpose: Enables the robust, feature-rich, and user-friendly command-line interface, handling
subcommands and options parsing.
— Integration: Managed via CMake's FetchContent mechanism during the build process.
— License: BSD 3-Clause License.
= spdlog:
— Purpose: Provides a highly efficient and flexible library for structured logging throughout the
application, critical for debugging and user feedback.
— Integration: Managed via CMake's FetchContent.

— License: MIT License.
= nlohmann/json:

— Purpose: Used extensively for representing the parsed Liberty library data internally as JSON
objects, facilitating data storage, retrieval, and manipulation (e.g., for monotonicity checks

and comparisons).
— Integration: Managed via CMake's FetchContent.

— License: MIT License.
s ZlibBoost:

— Purpose: A multi-threaded library processing tool which is the foundation of the z1ibboost
subcommand. It significantly boost standard cell library characterization with machine learning
using Python. See https://doi.org/10.1145/3658617.3703638 for detailed paper.

— Integration: Need to specify the path to the ZlibBoost main python script and python

environment in the ZlibValidation command line.

— License: BSD 3-Clause License with Commercial Use Restriction.
= tabulate:

— Purpose: Generates formatted text-based tables, significantly improving the readability of

reports generated by the compare subcommand.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/csguth/LibertyParser
https://github.com/CLIUtils/CLI11
https://github.com/gabime/spdlog
https://github.com/nlohmann/json
https://github.com/skycrapers/ZlibBoost
https://doi.org/10.1145/3658617.3703638
https://github.com/p-ranav/tabulate

6 ZlibValidation

— Integration: Managed via CMake's FetchContent.

— License: MIT License.
= slang:

— Purpose: A powerful library for parsing SystemVerilog/Verilog code. It's used here to analyze
Verilog netlists, extract Abstract Syntax Trees (AST), generate structural Verilog (verilog

subcommand), and extract logic for functional equivalence checks (func subcommand).
— Integration: Managed via CMake's FetchContent.

— License: MIT License.
» ExprTk (Expression Toolkit Library):

— Purpose: A fast mathematical expression parser and evaluation engine. It is used in the func
subcommand to dynamically evaluate the logical function strings extracted from libraries or

Verilog, enabling the functional equivalence check by comparing truth tables.

— Integration: The header file (exprtk.hpp) is included directly within this project's
include_3rd_party directory.

— License: MIT License.

1.8.2 Build, Documentation, and External Tools:

= CMake: The cross-platform build system generator used to configure and manage the entire

compilation process.

» Doxygen & Graphviz: Employed for automatically generating source code documentation and

visualizing relationships, aiding development and understanding.
= V2LVS (Calibre® Utility):

— Purpose: A command-line tool included with the Siemens EDA Calibre® platform, designed
to translate structural Verilog netlists into a basic SPICE format, typically for Layout Versus
Schematic (LVS) verification.

— Integration: The spice subcommand optionally utilizes v21vs if it's found in the system's
PATH. It serves as the first-pass engine to convert the intermediate Verilog representation
into a raw SPICE netlist. ZlibValidation then performs post-processing on this output,

and ensure correct formatting.

The seamless integration facilitated by CMake FetchContent for many of these libraries, combined with
the direct inclusion of others, significantly streamlined development and enabled the rich feature set of
ZlibValidation. We encourage users to consult the individual project licenses for detailed terms of

use.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/MikePopoloski/slang
http://www.partow.net/programming/exprtk/index.html
https://cmake.org/
https://www.doxygen.nl/
https://graphviz.org/
https://resources.sw.siemens.com/en-US/video-how-to-translate-verilog-netlists-to-spice-using-calibre-v2lvs-utility/

Chapter 2

Development Diary

2.1 2025-01

2.1.1 2025-01-27

» BT —ACH+ZEBIR, EACMake EIRRIFSE, FFERMTIMBE 1ibsi2dr_liberty.a.
» RINT CLI1L BEEAAMR A S1TSHRAT
» JRINT spdlog HEE, SRMEMAIHERALEEH.

2.1.2 2025-01-28

» 0 nlohmann/json EEFF JSON #iEFEHENKLE.
» 7 version.h FIFFEMIBIEE . IRA. 1HZRHFER, H CMake HENHR.
» FUT --version SHMFTAINMILI, FHRMT -—mode EHILERFE TIERK .

» {#/ spdlog FERIHEICFRZNG debug RAR LRI EHHEIZ M, 4 info HRIRILERH
EHHEHEEA .

« WENXHTESFE AN LibFile X5, RH TSI, BTFEMEIHNTZE, &2 PVT
EREARKEN.

— BAE AU G EBEIRE R E 4B PVT £,
o 3RER C++ AR, F=HEMAHERIIFEIRAEST #include FAl.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

8 Development Diary

2.2 2025-02

2.2.1 2025-02-01

« EAERXNRERE (OOP) EMTRERCESEINEINNREG, HEHABMRIRNEEA

LibAttribute 3§,
- FBEEEHREIRY char « REIWEMEREIRA std: :string KB, [FEFIMERERA.

 BEMERIEE KN AttributesIterator K, EMMREPAITENRERE, KIFIRRE
Bl#nsa L (RA“)o

2.2.2 2025-02-10

» BAERNERIITRE K H GroupsIterator 3, FEHFAMIRHPLIEENEH.
« 3T LibGroup X, RETIZEAR. X7, BiE. FAHMNFGE.

 BEMEXHLISE, BEMLIAME stc BRT, BEMEXMIE include BRT, £
T CMakeLists.txt BHINEXMH, ETRRALLEE.

2.2.3 2025-02-11

o KL THR A hpp TR, 18T CMakeLists.txt RIS HUTEM N, CMake 47iF AT a2
B

» JLibFile EHFMTHHE A json LRI E LibFile: :writeJsonToFile, HREIBEH H

PVT. cell_name. cell_footprint, cell_area (8.

= [x] voltage i MBIRERMER

2.2.4 2025-02-14

= # json_utils.cpp 1, SRELTIA JSON HIELEMEIMEREME (Ib) FRRITIRE, BIK

E',}E‘ generateCellJson, generatePinJson, generatePowerJson, generateLutJson %r_ﬁ

. FHRMTE R hpp k32
» [x] B (timing) (SR AT IIRERFSERL -

= FTIER BN R parseStringToVector, Z BRI AIEILES S RIFHEBMAZIEDE, U
{&FiEE Look Up Table (LUT).

» 4 LibFile XZRMTFAH BN 1ib_json_, A-FTFiEEE (lib) B JSON 3f%.
= HETHATEREREMER ValuesIterator 2.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.2 2025-02 9

» {8347 LibAttribute::isComplex() FEAIRE{EZEE, HEXRITE A bool KA,
» EET LibGroup::getName() H%{, {FHE#EIR[E std: :string FERIFYAHBZFE.

» EMTERSRERARS. BRT RETEH si2drGroupsIdT sub_groups HEMATE. H
¥{EH 1ib_group.getGroups O HIRE{EH TG GroupsIterator, #FA TR ABHI AT
Aoy

2.2.5 2025-02-15

» LI generateTimingJson %Y, ATL2EMBIHFER.

2.2.6 2025-02-17

» U TIERSRESMBRIARRIE, MBRATHIZN R beginO Fik, B AEMER A
s

2.2.7 2025-02-18

= ##8 LibFile::mono() ik, MERITINEE T4 H 51T values BIiERIEHHE.

» BT setupLogger O B, HHEXHBFIEASHEN, ETREARDLIEEXIHREE
Xt

2.2.8 2025-02-19

» {847 mode == "mono"1EN THIIZLE, {EF C++17 5| \HY std: :filesystem::exists() &
BHER B JSON XHREHFE, MR JSON XHAREFEE, N EAEXEBTINGE, £
JSON x4, AEBHITRIAMKE.

» SEIT LibFile: :mono() ik, ¥E cell_rise. cell_fall, rise_transition, fall_transition 3XPq#$
timing 58, $XH LUT HIEEHE, KEH value BEERBHNE—ITRESRIFRIAIEIE.

2.2.9 2025-02-20

= LibFile::mono() AiXIEMERGITINEE, EREFEITHREMHEAMKESD passed (1B
i) #0 failed (M) BY cell HE, #MHIBRS#E liberate_1lv TERIXI.

»]l s1018_ff_3.96_-40.1ib Hf|, 5 liberate 1v TEIFELIRX, Z5E1YH 205 out of 559
cells failed,

» MFERBGEEES, ENEH when 52, AERFEEERKME.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

10 Development Diary

2.2.10 2025-02-25

» EMGTITSHMN, £ CLI1L EMFH<T, ESTEEREHEHR parse. mono L&,

2.2.11 2025-02-26

» FRSHWAEHHEXGE. BEXMHE, FRETHNERIME.
» MUATE Logger MIMAUEHTENRAER . BRAE -h, -v HESRITEH.

= LibFile::mono() A iEIEMNAT input_slew KR IFMNE, MREMNNFIEE, MKE value
EENES—IETEE. £53MiK, tcbné51pbe.1lib #HiH5 liberate_1v THE—Z.

2.2.12 2025-02-27

» ZEEHITEIRX, KAGDBIAR:
— si2dr_liberty EETEREHT Liberty SCIFRT, RIEEEA T HEMEEEN (HIUEFHE. FHFH
R) REGEBTERI D EEEE.

- ESEKBRFITENEZN XU, FRKNZKIERR AR si2dr_liberty BERJRE, FH R M
MR A ZHIELSA.

— si2dr_liberty FERTHER A RIVE BHLREFFHEERRIPIERZHIREN, SBTHIE

=%
- HIERTSRESHTAERR, 5 stremp BREARSEIRERIHRTERANE, MET
BBz

2.2.13 2025-02-28

» B3 LibFile MYAIE RIS HTHARE, read A ATAE, BN parse F7ik. 4 si2dr FIIEK
5HBMTE parse AR, (1% mono 75ik 5 si2dr BEfFHE, WML E&EFHTRIERAME.

» [x] TRE si2drPIGetGroups FKiBHHJ bug: WARNING: si2drPIQuit: GetGroups called 1
more times than IterQuit, RTFEtF?

» 2B TAPALE CMakeLists. txt H1{#] set (CMAKE_BUILD_TYPE Release) B/ 4miFsR{h{LiE
E. BEGDB HFEATAKEHEKER.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.3 2025-03 11

2.3 2025-03

2.3.1 2025-03-01

» sub_groups_iter 27F X for [EMMERPEMHNBHEE ABREREREEIEMABES
R, FARBHIAR, BEEXEER. L si2drPIQuit RRIATFFittiE.

» TR group_iter MIMTHAREIA £ 7E parse F7iE4E3RAT, FTLL parse 7R EHY si2drPIQuit
HE) T TR groups ARiB HAIES -

= 4RE, si2drPIQuit MBS R E T MR groups RIBH SHHY, £ parse XL RFHELE
W, AREMKE LR AFTR.

= [] IBFEHLT parse, log MIHAEAERS: BINE_FE=NENMESSRITENZ I ERPVT
22, BB it BImET— A ER S FIENE (parse 6s Z£4, mono 1s). FH{THL1T mono, log
mHSEPARE—NENXHE.

» A LibFile EMFAERBMERMT VIHRE, BER T AVMBILAEE, 15?

2.3.2 2025-03-07

» SLILT compare FAFLHIMEMNT, REWBXIT BT MHMOREI TN, FERXIRAT JSON .
[MAFERTESAHMEE, SXHLENBETESBEE TR,

2.3.3 2025-03-10

#T1E supercell FAy<& N LibFile: :supercell ik, RMTHEMBRATIAHEIE.

= &EMT zlibboost Fa<, ZHEAFFEEFMELTIER zlibboost. BEEFRERBEE-
BAETFaLHHIGHMUEALER, BEXHRE.

WINT clear Faid, FH{EBEEMA JSON XHFBE K.

2.3.4 2025-03-14

» RINT tabulate/table &, i@id CMake FetchContent S TEIE, AF 4B LI RIREH .

» #1387 compare.cpp 1 compare.hpp X, €I T LibraryComparator 3, FFILEFAEN
EXHNESR. BRI TIEESEE JSON XHRIIhEE.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/skycrapers/ZlibBoost

12 Development Diary

2.3.5 2025-03-15

= {EF std::filesystem::path BT LibFile K XHBREEE, HEXHBREHNBHE
Fi4biE . LivFile ERMTH AT E basename_, filename_, libname_. jsonname_
loggername_, FFTFEXH&. FEH&. JSON XHZFIHEXHA.

= JBITIERIE (scope) BB LibFile: :parse FixHHMEER[BHOEGEAL, RAERH AR
si2drPIQuit {RIEFIERE, MR T HMES N ER BEESH HANEBEREEIRVEE.

» clear FAR<THEMMT MR -map 0 .md SCHAITHEE.

» LT mono FRITHESLEHT BEANERBTRESXMHAN, WRE. MNFRERETE
FHFTEAXHR JSON X, BTMIRFZHITS XHERET. ERAXHR JSON AR
B, REXHHENRLRER STMEELR—TENRALREE.

» BT spdlog HEMIEK, IR logger IHRMARIZE L BEIA logger. {REE & A APP_NAME
K& 5 logger, AFHIHBMEIRRER.

= J LibFile ZRMTMIIKIRREE logger, ATIERBITEXMHRIBERR.
» SERLT supercell FAILHISLIEFHIT, AIEIBES nono FaL M.

» LibraryComparator::generateReport() Fi%killiX T tabulate FERY markdown F#&%H Ih
ft, TETIREHAMBEEAY, SFESEE. ILRE. HNEE. HEER. RELEMRIE
FOE G AR .

2.3.6 2025-03-16

= §tXf compare Far ¥, WMTIMENHENRE, BEREL nd 5 .txt FRE. HEAHE,
g HESFHBERM nd FE.

» #H—FFET LibraryComparator: :generateReport () Fik . MIE, 1%/ iL6EM%iB A L B E T
HIFRE cell, HES EEREHRHK TN cell . aNR LB, MIFA A LibraryComparator: : compareCell ()
FiE#ITIE: BN, KiEF cell RKBMWEEFRER-

» T LibraryComparator: :compareCell () /ik, HFLLERmANEREZ cell B4 H 5.
ZFERBALLRE cell WEMIHSIM, ESEE cell hIHEASIM. MRKB, WEA
comparePin IREJLLERSIH): IRAKIKE, MIREEREE . WRILKE cel ZFHHSIH, N
SER—FEERRIMAE.

» T LibraryComparator::comparePin() Fik, FAFILEBANERREZ cell BIE A5 H.
ESBALLEE pin BJEGA timing arc, HESEE pin PEIKRMBEEZEEA) timing arc. IR
Zl, MFA compareTimingArc FHEHITILE: WRFKIKE, MIEREEFRER . WMRLLKE pin
%A timing arc, MHER—FKEERAIWEE.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.3 2025-03 13

» {847 LibraryComparator: :compareTimingArc() Fi%, HFHLE B4 timing arc JSON X
R. ZHEEFRICRIEELLRA timing arc FYZEE], JAFIREX "related_pin" B, 5, ©
BHTENR timing arc ZFRFIF ("cell_rise”, "cell_fall”, "rise_transition”, "fall_transition"),
HAELL B EPERIXLE timing arc. MNRKE|, NESEEPEIRITLA timing arc, FiAA
comparelut F7iABHTILE . MR SHEEPRIKEXTMAY timing arc, MIEREEHER.

» {3 T LibraryComparator: :compareLut() Fi% (J& compareValue /%, CEIEfE), B
FLEFA JSON x5 h EHHERE BFRE value. EEEREFA JSON X5 AT "index_1"
M "index_2" #44H, MIRZXFNMEAEE, MIERBRELSIIRE . WRES|ICE, MELE
LUT FRHISERR value B, HARFBHEXMEZE (reltol) MLEITHZE (abstol) HRIEER.

s EFREUTEREERE REAMUERERMMEN cell_name. pin_name. timing_type.
related_pin #1 arc_name, M{EHERAEHIRIIZRITEBERMHERER.

» {88 7 LibraryComparator: : compareValue() FikRJap &AftiR, @ B IF A LibraryComparator: : compareLut
» CETRHERE, BEJEFIFSHAIEER -, BB TEEH—FHAZ.
= FIET abstol SH, BIAEAN 0.002ns, AFIZEHEINEZE SERIETERE—H.

2.3.7 2025-03-17

= #if verilog il spice Fd, FTFLR Verilog 7 SPICE K13,
» 5£3 LibraryComparator &R :

— AT cell MR, NEFERBYENAHRE, BRTRAH.
— BN cell ERGITINRE, WMHEARFEITRME, BEIXHF Timing A Delay AILLEL .

2.3.8 2025-03-18

= GRS, @4 | Cell Name | Data Type | Failed Count | Avg Diff | Avg Diff% | Max Diff |
Max Diff% | Outliers |,

» PRI EFTEE R, BE | Pin Name | Reference | Comparison | Diff | Diff % | Type | Arc Name
| Row # | Index_1 | Column # | Index_2 | Note |

» HWERIEA stdout FiHIENRI A, HEREIL.

» 180 si2drSimpleAttrGetBooleanValue 13E, FHTIKENF/REBMBEMHE, FIEFSIHE
HERFSIH.

» LibFile::mono() ¥&fN¥} min_pulse_width HYEAIFME:

- $tXEE "input_pins” By cell, BHEMNSIH.
- RS2 5, NIEHE "timing_arcs”.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

14 Development Diary

— &%t "timing_type” A "min_pulse_width” B timing arc, X} "rise_constraint” 1 "fall_—
constraint” i B checkTimingArcMonotonicity H{THIFMKNE.

» checkTimingArcMonotonicity R HAERSBTE when (52, MIHARRE.
» checkTimingArcMonotonicity #ZIL LB INEEEUE T E TG R, HHEEREIANABEE .

» checkTimingArcMonotonicity #ZELERINEEIGHNT HIMT related_pin BEHEF HE] pin, A~
ETFNBTE . RE&W A MREMKEPHENT—ME, FEZHATSIHAZHERSIM, 5
FHEMEMGT—MERBAE, BARIAAXLEERZRIREIGH.

2.3.9 2025-03-19

» 5 supercell ik, MRBERMESIIM, #XKEHRIZAL, BERBRET.

» fBR voltage iF S ERZEE) /A, std::round(voltage_ * 100) / 100.0 fR R HL/NEL.

2.3.10 2025-03-21

» #HE func Fad, ATHREESEVerilog XHHIZEEM K.

2.3.11 2025-03-24

= BAFFT C++ 1R{E Verilog AXRIEE, $XEIT —1SLHRY Verilog B slang, ERLUEMTH
KIFER (AST). BfER CMakelists X, 4§ slang EMETBEH, BHHEIEEMRRE APL.

2.3.12 2025-03-25

= #E verilog_utils.cpp # verilog_utils.hpp X, HEIET VerilogVisitor 3, AF
BENI®A Verilog AST,
- BT slang MRS ALB A T HIMBATEE
- BWREEGIBIE (W0 AND2DO0) . S Z:AYFiB4E (40 CMPE42D1) FNE AR FiB4 (40 DFAD1)
YIREW IERBREAT -
- AFPBEXRE (UDP), It tsmc_dff, SWHRMIRFIAERELGIUL, FH £ "Invalid

instance declaration” 245,
— BUINREX THERE . #HO7AE (input. output) R AFR.
— BTG Bin EEMNBR WIS, FIRBUESRZ. 6| BFRMmOMHXE.
- BEMERRMTIRIRIBEEGIL, FFIREN KA. LAIBFR. MmOFMMmARO.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/MikePopoloski/slang

2.3 2025-03 15

2.3.13 2025-03-26

—EET X UDP (30 tsmc_dff) imOIRRGIXRAVERMT, EHEMNER Entry i RAGE.

2R T IR T 4Kk slang: :syntax: :SyntaxRewriter EEIEBEN XK CellExtractor, SEIT
SRBERER. Mk E4ER, FBESUERIEER BSEAF Y. EH slang: :syntaxe
: :SyntaxPrinter: :printFile () JiER[IAAE Verilog X% H 232 4.

Hl]rﬁ'#

» BT CellPrinter 3, #7&H slang: :syntax::SyntaxVisitor . ZLif|a) | HIRrERAT,
{5} module.toString() FiXkthaedF Verilog KA B, EBEZNHHERPZITSH
IR -

» {87 LibFile::supercell() Fi%x, iZ A xR LARIEMINAR cell_names 4 pI5ERY super-
cell, HEBRERKINETHIETESER

» LTRSS EIRIARIEA K, DU S5 EIAR B supercell RIBINSIBD, W2{XICR AR
T, FBLIEN input_pins EGHFTR.

» 5|NT Doxygen XHAEMTE, BFAIMLIIIE, FEMT Doxygen HTML 3Z44%0 LaTeX
SEFH.

o X EARBRFMPETAEBER, ATREEFEZEEENX LaTeX K3

2.3.14 2025-03-27

» ERKIR! IRIBME Git 7%, SEISRBERELX. FLFIE: ++ RERIZABE!
» SCIPT LibFile::verilog FixRIEZIDTEE:
— B%AHR this->supercell() £IBRETT.

— EE .map X1, IREVETMETIX R R std: :pair<std::string, std::string> f (J&
BT E > BRATE/ERE).

— M 1lib_json_ FIREXETTRIBIN/HHIKOGER.

_ BE TR, B Verlog M instance FUAMEE (FAZEN 1, A
BT chain length),

— B FARREER ANSI RIEHIROFIR, F5ERBEESHTERN fullModuleText.

— {# [slang: :syntax::SyntaxTree: :fromText M fullModuleText & i &N .

- BIEEREIHEL ModuleRewriter 2, ERAH transform FXBHERM R, FHEL
handle() F7ik#1TAbE.

- 2F. EH slang: :syntax: :SyntaxPrinter: :printFile(xtree) b I8 IR HE L R
H 2324

» LibFile::verilog B BTREMSIEMH R ZFN ANSI RUEHTIR O A=A

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

16 Development Diary

2.3.15 2025-03-28

« TPTEERKRIRFBAF T RRIIEE. BFME, # ModuleRewriter: :handle(const
slang: :syntax: :ModuleDeclarationSyntax &module) %M, i8id insertAtBack(module.

members, newDataNode) PR#{, F{IIMIZEEMMRE RHIKRBBATHXETHAENRETES
BE. 40 wire OP_1i;.

s BRI EERAESFEMT B EEMETE. BT MHFAT CELLNAME__X#__CRITICALPORT«
__OUTPUTPORT #&XHIFFH, BEHABMANSO (critical input port) FIHyHuO
(OUTPUTPORT), RFI/EZERISEHIL IR OEE.

T TS HIEORN DML E P__UNUSEOUTPUTPORT, BT EEAEEEZENM
HiwO.

o A IHMFERRIR AN T AR L GIL BT R ROARER B AL BAR, SR T i O AR ST KX R AR A
.

« WIET R ERAESSIESRT (W INVD0 RIERR) MERESSIERT (W FALDO £/NZF)
RIMTHEE S, ARIFFETH.

» 4 ModuleRewriter FERMTFABREBIE std::map<std::string, std::string> port«
InfoMap_, FAFEMIROMEIAR, im0 BME2IEAE (input/output).,
= SERR T SEGIL iR CERER AT AL TR :
- MRBRBWMAHOBAE—IEG, NEEEZRIBAGO: TN, &E#EH oP_G-1)
XERREMEETE.
- MRIXEWMARO, BARE—1X6, MEEEMmHmO: &0, &2 op_i g
MK E .
- MRE2HMHHIROBARRRE—1E6], NEHEE P_i__portName iXiFH)H 8 ML
2 B, ERESFwROA.
- HfEMARO, EF25TFiwR0O42.
= XHA®E, GitHub I GESFHALTAE, HEET GitHub Pages. AIAIEIE https«
://cedar17.github.io/ZlibValidation/ J5[a)I1 B 34y, Z T E & & Doxygen £) HTML
AN EE RO

» FEE T GitHub Actions, SEIT Doxygen 3 #4%0 Graphviz Bl E L&, UK LaTeX &%
FHYBEHEE (EALIEPY). §RIE dev Fl nain SR HLME IS EFH
HIER, FH AR gh-pages 473,

» BEZAEMEER include_3rd_party BRTF, AEEE. T CMakelists 3, BE=
7 EER) Sk B E R INZ include_directories M, 1T Doxyfile 32, E=HFERkL
XHBEERME) INPUT f, EFXRERTEEME=FERE. ENXRARERTE.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://cedar17.github.io/ZlibValidation/
https://cedar17.github.io/ZlibValidation/

2.3 2025-03 17

2.3.16 2025-03-29

» {887 Doxygen £ LaTeX SEFMAT P X ERALEMB OB, BIIEM Doxyfile 304, i
il EXTRA_PACKAGES = ctex I, FIETE lualatex {EHHREE, MINAR T BB RTE.
[FAt, M include_3rd_party BRI T Allsyntax.h {4, EHRTHTF LaTeX 3244t
KEHH "TeX capacity exceeded, sorry [main memory size=5000000]" P 7EAE [B] &

» SKIT Verilog XHRITREERERINEE, KA ANSI RigRmOSFREANX, X5
liberate_lv TEARKEEL—8 . STLENT:
- BREZEDR Verilog RABFMEIGET STHH .
— A IBERAIEFE S, (F std::vector<std::string> WWEST/MEMRR input_pins

F0 output_pins,

- BHRAERRAIRIIR, PHERRAFSIHZ, EMTEHERA all_input_ports

all_output_ports.
- ERFFHBEBHEARE validate_top IR TER.
- ERBIEN XGNBTSTEERRBEEIE, il BIRLR Verilog 3XFH.
» E¥ deploy-docs.yml, EET GitHub Action £H) LaTeX SEFMAHPHWEIRBREE. B
TS RINT:
- EBRAGRX A Asia/Shanghai (FR/\KX).
— Z23E miniconda ¥ #T conda,

— J8id conda R3E 1.9.5 fRZAHI Doxygen, HRIE graphviz IFRIKBIXFR, BWRE dot
E#PREEMMRIFL pdf ST

— {£F doxygen fFTHEM HTML STH4HN tex L.

— 3R H action marketplace $24£A] xu-cheng/texlive-action@v2 LI L EHY texlive2024,

— # N ./doc_doxygen/latex H3E, i&{T make fp<{# H lualatex #HiF tex 30, 4R pdf
4.

— {#H JamesIves/github-pages-deploy-action@v4d 4R pdf X LEES| GitHub
Pages %%, F{%£%¥ README.md 1 index.html 3Z{§.

2.3.17 2025-03-30

» 5ERT LibFile::logic(const std::string &cell_name) Ji%, iZFiEIREIEE cell_name
FrE4% 5| BIX MR IZiERIE,, WL std: :map<std::string, std::string> HJEIIR[E,
FiEmH S I 2RB KB EREXFH BN LR,

» LT func FRSHERER, ATFRERESR Verilog XHRIBEEME.

- 5EET funcLibFile iR¥Y, BERSALIE Liberty X470 Verilog THHEASEFLEITR .
— BN SR BUFIET, RI|XHT R BEFARMNLESLK.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

18 Development Diary

- R TX . lib XHRIBE, HRBIEE cell RIZHERIEX.

— B # Liberty HFRIBEFRIENIREN, Verilog LHRIIZERIENIRININEE MR X
(TODO),

— HINT X report XHBHINE, BWREM nd 5 .txt R BEARFE, NEHESHE
Zhikin .md G4

— KB T M Liberty XHHIREUBIERIAXAIINEE, FAT LibFile: :logic Fik.

- #EmT BERE . BREN cell WBEFRIEIRRMLL BT,

- BB BERIAE, FEH| (TODO).

2.3.18 2025-03-31

= SCHLT M Verilog MR FIRENUEERIZKXAIINEE, ERAT LogicExtractor X,

— &I T AMAE A Slang FEM Verilog Z1AR R APIRBUZERIEXK AR

* (£ Slang f##T Verilog LAIREVEZ MR (AST).

« W AST EfLBFrELR .

* EEMERAAEMRIABRT, RFEN. B EMEDRERXR.

* MEMHED, BRAREERTNEANEZREEHMANIRO.

* AP EPRFEBEN LB HEBERENX.

* BRI EARBERITERLN /ESHEEITE.

— BT LogicExtractor £, AT Verilog REGHREVEERIE

* LogicExtractor J{E M Slang BEfE#T Verilog X, FHHE BAFMERIIMRRT.

* SCI0T handle(const slang: :syntax: :ModuleDeclarationSyntax &module) yil
%, RTEGBEER, FHEEABEIES.

* SCIT handle(const slang::syntax::PortDeclarationSyntax &portDecl)
%, ATFRBUROGER, SFimOA AR,

* 32IP T handle(const slang::syntax::NetDeclarationSyntax &netDecl) FHik,
ATFRBRZEMER.

* SCIT handle(const slang::syntax::PrimitivelnstantiationSyntax &primitive«
Inst) ik, ATFREIIARETER. SFEMNEKE. AANEHES.

* THLT getlogicExpressions() ik, ATRERMOMEESR, BEAMESS
s O RIZERIER.

* SCIPT deriveLogicRecursive(const std::string &signalName) /3%, A%
HiESEEFESHZERER.

* SCIRT formatExpression(const GateInfo &gateInfo, const std::vector<std«
::string> &inputExprs) i, ATFRB\IIXBMMARIZEN, ERBERERXF
e

- SLIPT extractAndPrintNetlistInfo(const std: :string &verilog_file, const
std::string &cell) ¥, AFREFITEHMRES. SFEHAN. W, XN
BT,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 19

— SR T extractLogicFromVerilog(const std::string &verilog_file, const std«

::string &cell) FHEY, FTFM Verilog XHHIREIERE cell HiBEFRIENX, FHIL std—
::map<std::string, std::string> BJFERIRD.
» AT EIFHALARAEN I LogicExtractor M verilog_utils.hpp Fl verilog_utils.cpp

hoEHsk, FHEIETMIIA LogicExtractor .hpp 1 LogicExtractor.cpp X . Eft, 4
— T FE hpp 1 cpp XHHIMBHE, EEHSWEHEBRF—H.

» i LogicComparator R HINMK. BEXMH RAFUHEAMEEREXNENE, FHEM
BB -

2.4 2025-04

2.4.1 2025-04-01

» BIBSAXMHSIA WRTALENSIR, REFFNE.
» 5|\ exprtk.cpp BISE=ALXHBER, AREMNREXBTMAES.

» 5EET LogicComparator FRJSLIR, T H RFIXA4ELR template <typename T> void
logicQ);, ZMEIREEBI — PN RIEXNELMANTENAEAS . ITEHBEE. FTHEESR,
AEEEERIEREER.

» SCIPT LogicComparator: :preprocessExpression() Ak, AFHAEZERIAX, BHE
fERERX, FEESTFILER. TENEENT:

— o+ G5— AND AR «+: 4F « FITHEER I AND EBiLH AT HEHY and, 4RIE AND iZHFF
2R,
— ox BRREAE o
« ERARS O ARRMEE, AERESIA.
* & + BHA or.
* 15 " H#A xor,
* ¢ (3E '= Y 1) B not.
* 1§ « BRI and.
— ok i w0 BETTREBERHFHES A token FIFK.
— o FEFRIENBE T ANDx*x:
*x 1@ token %K.
* KB LAY token FIT— token, T FHBUATHRM, NEZHH token Z/FHEN and:
- 4T token 2—MHRIAKF (40 A, CIX) HEHRES).
- =1 token B—MrRFHHERES
-] token RR—NMERBEIBZEFF (and, or, xor, not) HAES (.
- T token FR—N"EXEBBIZEFFERES).

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

20 Development Diary

— o BAGEE o HBREFH token JIRARNTIRERR, FHITRLNTIRIFE
(ERERTE, BHHEESH) [RIARLHMAERIEN.

» 7F CMakelLists.txt F, SBHIBHAT Ild $53E88H0 ccache, LUIRFFHEIEMMEmIFIRE.

» AT{R$FFmain. cpp BEE 45 LibFile O BETAIMERIRIERIE HRK HAIN LibFileOperations. cpp
XA

» LI T LogicComparator: :extractVariables() Fik, BFIAANRIER FIRINFWIIT S
% BRENZ.
- ZFHEEREMNRIEX TR FTE AT 8ERIFRIR A .
- EMRIHAFRIRFF, 5TH isldentifier iR¥ (REXEFLE) #HITRIE.
— @i isIdentifier WiF/E, ARG HERANEHE keywords EHILE, UTiRiEr]
BERIKHEIR (XR—MRTERSRIRE).
- AFREXASEBIENRRAFTHIAARENEE, HFURBEXNEEXFMEZEH

std::set H,
- BELEEBF std: :set 2HFHEE, MRAENIREERHIRE false, MRBEMNIFE
23R (REBRBANE) HFBEN sorted_vars FiR[0 true.

» {88 7T LogicComparator: :preprocessExpression() A iEH 3T not IRIEFFRIALIE., exprtk FE
ER not XEFEVMIREES, W not(A) MIE not A, ALLIBMT ETHLIELE:
- BHFAIEER token Bk, IRAFE not XEF.
- &M not J5, REHEFRERMIRMAFN (B isTdentifier O HELFIHT).

- MREEFRIRFF, B3 not A BNEHLA not (A), BEMIERMIRARM not. (. #5IR
580, FELT B ABRIFRIRFT

- MREFEEMTE (W0 (HMEERERERERE), REFEH, ik ExprTk & not (&
) ER.
— XJHEAM token, EHEERMEBIZLL token FIFR, FMHFFIRAIE.
» LI T LogicComparator: :compareSingleExpressionPair() Fi%, AFILBEMMBiERIE
XHEN 1
- BT ENRERXNFHEIEHFHNZETNRIEARMNSE.
- ABFERIEXTMEBRRER S A EE ExprTk IR (SR, REXIRIHRR).
- BRAZERMIMIASRY, BARETE—HMERIREFE.
- {EA ExprTk BNBREFRNRIENX, FREFENIEESER.
- B THGTEGE, ERRARERNAATEHS ('N#), Hh N ATEHE.
- XIEMHAS:
« EEWMINFSRPHEZEE (051).
* HWEBNRIEXHE, FHAERTRENIZITIEEIR
* BHEEREBBR AT REFFENEGEROE.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 21

« ASEEER, iICRENAS XM AIH HE.

- KBANMEREEFIREXEETEFN

- BEBHEERTIFEN PinComparisonResult A std: :optional fEH, U{ERER
HER.

= LT template <typename T> std::map<std::string, PinComparisonResult>
LogicComparator: : compareCellLogic();

- A EAFRREA coll MBERSK, BE—1 st mep, @8 ceoll B, EH

PinComparisonResult &E#3{f.

- BREXRMEEHENENMMIIHHSIHE, REEEEAZBEFHFERIENX, EXER
preprocessExpression #{THIAGIE, AR extractVariables IEENTE[ME.

— JAH LogicComparator::compareSingleExpressionPair() FikiH{TILE, EREN
PinComparisonResult X% .

— % /5% PinComparisonResult XfHETFEN std::map B, @#AH cell B, EH
PinComparisonResult X5, iR[E.

» SCIPT LogicComparator::generateReport() A%, IMERRINMEZIFE.

2.4.2 2025-04-02

« BURFTEIRIR TR template <typename T> FERR, BUAEM double {EAHSEAE, hOR

- %ET LogicComparator: : generateReport () ik , HIIN T FHEIEH B RANEMIR M
BiE:
— JTHHE, BN ««Performed by ZlibValidation v0.1.0 from Song Zixuan. on: Wed Apr 2
11:11:39 2025%x
- B, B¥F5% pin ZFR. pin function, 3% pin ZFR. pin function, FFEMEEER.
- &% pin WHEX
- IR pin EER
- LWRERKE, fHla:

Property Value

Status [OK]

Reference (Raw) (Y (' (A1+A2))+B))

Comparison (Raw) P(('AL % 'A2) + B)

Reference (Processed) (not ((not (A1l or A2)) or B))
Comparison (Processed) not ((not (A1) and not(A2)) or B)
Ref Expression Compiled Yes

Comp Expression Compiled | Yes

Logically Equivalent Yes

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

22 Development Diary

2.4.3 2025-04-05

» FMET LibFile::spice() J5ik, 24 spice FAR&iRMT SPICE MREMINGE. - BIMIT
which v2lvs SRMALHERRET v2Lvs TH., MRECLRE, WRABAZIEERER
Ry SPICE fZR. - M7 --vl 0 —-s1 @<ITIEI, RIFAPIERE Verilog BEESCf4F0 SPICE
BEXHRIE. - BRICREERERR SPICE MR, EEFEH—FTEMHAEN.

Generate SPICE file for given Liberty file
Usage: ./zlibvalidation spice [OPTIONS] library_path...

Positionals:
library_path TEXT:FILE ... REQUIRED
Specify the library file to process
Options:
-h,--help Print this help message and exit
-1,--log TEXT Specify the log file name. Default: <basename>.spice.log
-c,--chain INT Specify the chain length for SPICE generation. Default: 1
--cells TEXT ... Specify the cell names to generate SPICE for
--vl TEXT Specify the location of the Verilog primitive library file
--s1 TEXT Specify the location of the SPICE library file to be included in the output

» SSPAFAE LibFile: :splitString(), ATFHFHBRTRIERNZS N FFHFH, FiRE

—I* std::vector<std::string>,
» SCIPT LibFile::generateRCLines() Fik, AT AL TEH net LAY RC lines,
— %77 ERYE isFinalStage B4, £MARER RC 415,
— R isFinalStage 4 false, MJ4ERY R1-C1-R2 £5#.
— W isFinalStage 4 true, MI4ERY R1-C1 Z544. - RC BIERIN{ES 2 EH4R SPICE X {¥.

» SCIPT LibFile::modifySpiceNetlist() ik, FAFIEX v2lvs 4Ry SPICE MR,

- ZHERMTERETE, SRENAER. BA. (EEFREE.
- f£%$— .INCLUDE 354 5B NFEER global line,
— {834 subcircuit, fE .SUBCKT E X KR O%|FRP I VDD VSS.,

— 3FF subcircuit FIFYEEA instance line (L X" #'x' 773k), B4 B 5| 4 %, % fn VDD/
VSS % #:, i H generateRClLines 4 i R/C lines.

- RYFEAEEE, Bkit 4T, v2lvsheader line Fn)f#4#.GLOBALLine,
= T4 ELIT LibFile:spice()” Ak, BEWBAERM SPICE MRFFiMmHBIEEXEFH . SPICE MERH
EREIENT:
- WERBIEET Verilog EEXXFA SPICE EExX§, MREF/IEE, MERARINEE.
- A v2lvs TEAEM#FH SPICE MEK.

— J8F LibFile: :generateRCLines () Fi%, 4 SPICE MERFHIE instance & XTI AY
RC lines,

— B F LibFile: :modifySpiceNetlist () Ji&, &2 SPICE MK, FRMMTTEIE. FHA global
line. % instance lines, F4MELZ%H SPICE ME.

- HRLH) SPICE MR HEHEEX .

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 23

2.4.4 2025-04-07

= S E A HIZ M README.md FBEMIIAY Changelog.md X4, FHTF doc/ BERET, &£
EREHETERE.

» £E5E README.nd, AMEIMB#EIE. BR. Wl TRER. EATHE. XESFH. Eif
ERE, RAMBRERMTEN.

= A% CMakeLists.txt, BUHESBHIER ccache #1 11d WIEE, BUAKNRSEINE, (NEFHE
HETERBH, EEnEREM.

= BBk FetchContent Y QUIET JEWN, HEMULERTER, EiFWHRTKBENKBURT.
« DIHRAERZE vi.1.0,
» BB CMake fRAER 4 (VERSION 3.21...3.31), WHRIIEAEERATEEREE.

= 7£ README.md A1, $53IE%it ZlibBoost INH , HIIBHmFXEISEFMIHIE, RE
ccache FA 11d F| AFIiEHRmIFZ AR

2.4.5 2025-04-10

= fEIET printInfo() MEFAEREIR, BXHHERSIEIENR trace, MMIE debug.
= HFINT mono FASHIMKAL 2] test.sh HIAA .

2.4.6 2025-04-15

» {88 7T LibraryComparator: :generateReport JFiEHHI— bug, max_diff IQ7ZEREE F 43+
EtEEHEXER, HESKESEILLRE—H.

» TETHEXBFHIHNMAGS. BERENTHLHPEELE test. sh BIARPIEFRMIT

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

24

Development Diary

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Attributeslterator L 31
Gatelnfo 39
Groupslterator L 41
LibAttribute e 44
LibFile 48
LibGroup 72
LibraryComparator 75
LogicComparator e 85
PinComparisonResult 112
slang::syntax::SyntaxRewriter

CellExtractor 34

ModuleRewriter L 108
slang::syntax::SyntaxVisitor

CellPrinter 37

LogicExtractor 96

VerilogVisitor 119
Valueslterator e 116

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

26

Hierarchical Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Attributeslterator L.
CellEXtractor

Groupslterator L
LibAttribute
LibFile . . .
LibGroup
LibraryComparator
LogicComparator e
LogicExtractor
ModuleRewriter L
PinComparisonResult
Valueslterator e

VerilogVisitor e

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

28

Class Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

include/Iterators.hpp L 125
include/json_utils.hpp 127
include/LibAttribute.hpp L 137
include/LibFile.hpp L L 139
include/LibFileOperations.hpp 141
include/LibGroup.hpp 157
include/LibraryComparator.hpp 159
include/LogicComparator.hpp 161
include/LogicExtractor.hpp L 163
include/verilog_utils.hpp 168
include/version.h L 171
Src/lterators.Cpp o 174
src/json_utils.cpp . . . 175
src/LibAtrribute.cpp 189
src/LibFileccpp . . . o o 190
src/LibFileOperations.cpp 207
src/LibGroup.cpp 227
src/LibraryComparator.cpp 228
src/LogicComparator.Cpp 233
src/LogicExtractor.cpp 250
src/main.cpp

This file contains the main function for the ZlibValidation tool 261
src/verilog_utils.cpp 269

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

30

File Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 6

Class Documentation

6.1 Attributeslterator Class Reference

#include <Iterators.hpp>

Public Member Functions

= Attributeslterator (si2drAttrsldT attrs, si2drErrorT &err)
= ~Attributeslterator ()

= void next ()
= bool end ()
= LibAttribute get ()

Private Attributes

= si2drAttrsldT attrs_
= si2drAttrldT attr__
= si2drErrorT & err__

6.1.1 Detailed Description

Definition at line 23 of file Iterators.hpp.

6.1.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

32

Class Documentation

6.1.2.1 Attributeslterator()

AttributesIterator::AttributesIterator (
si2drAttrsIdT attrs,

si2drErrorT & err)

Definition at line 14 of file Iterators.cpp.

6.1.2.2 ~Attributeslterator()

AttributesIterator::~AttributesIterator ()

Definition at line 18 of file Iterators.cpp.

6.1.3 Member Function Documentation

6.1.3.1 end()

bool AttributesIterator::end ()
Definition at line 21 of file Iterators.cpp.

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.1 Attributeslterator Class Reference

6.1.3.2 get()

LibAttribute AttributesIterator::get ()
Definition at line 23 of file Iterators.cpp.

Here is the caller graph for this function:

6.1.3.3 next()
void AttributesIterator::next ()
Definition at line 20 of file Iterators.cpp.
Here is the caller graph for this function:
==
(] Lo generateCellson
[mononeceiorie | [Goriesmons [Gorierporse

[Ubrie-veriog [Goiessupercel
supercelllibfile

6.1.4 Member Data Documentation

6.1.4.1 attr_

si2drAttrIdT AttributesIterator::attr_ [private]

Definition at line 33 of file Iterators.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

34 Class Documentation

6.1.4.2 attrs_

si2drAttrsIdT AttributesIterator::attrs_ [private]

Definition at line 32 of file Iterators.hpp.

6.1.4.3 err_

si2drErrorT& AttributesIterator::err_ [privatel

Definition at line 34 of file lterators.hpp.

The documentation for this class was generated from the following files:

= include/lterators.hpp

= src/lterators.cpp

6.2 CellExtractor Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for CellExtractor:

slang::syntax::SyntaxRewriter
< CellExtractor >

CellExtractor

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.2 CellExtractor Class Reference

35

Collaboration diagram for CellExtractor:

slang::syntax::SyntaxRewriter
< CellExtractor >

CellExtractor

Public Member Functions

= CellExtractor (const std::string &targetCell)
= void handle (const slang::syntax::ModuleDeclarationSyntax &module)

= bool foundTargetCell () const

Private Attributes

= const std::string & targetCell__
= bool foundTarget__

6.2.1 Detailed Description

Definition at line 33 of file verilog_ utils.hpp.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 CellExtractor()

CellExtractor::CellExtractor (

const std::string & targetCell) [inline], [explicit]

Definition at line 35 of file verilog_ utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

36 Class Documentation

6.2.3 Member Function Documentation

6.2.3.1 foundTargetCell()

bool CellExtractor::foundTargetCell () const
Definition at line 364 of file verilog_ utils.cpp.

Here is the caller graph for this function:

i [t onaec

6.2.3.2 handle()

void CellExtractor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 348 of file verilog_ utils.cpp.

6.2.4 Member Data Documentation

6.2.4.1 foundTarget_

bool CellExtractor::foundTarget_ [private]

Definition at line 42 of file verilog_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.3 CellPrinter Class Reference

37

6.2.4.2 targetCell_

const std::string& CellExtractor::targetCell_ [private]
Definition at line 41 of file verilog_ utils.hpp.

The documentation for this class was generated from the following files:

= include/verilog_utils.hpp

= src/verilog__utils.cpp

6.3 CellPrinter Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for CellPrinter:

slang::syntax::SyntaxVisitor
< CellPrinter >

Collaboration diagram for CellPrinter:

slang::syntax::SyntaxVisitor
< CellPrinter >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

38

Class Documentation

Public Member Functions

= CellPrinter (const std::string &targetCell, std::ostream &out)

= void handle (const slang::syntax::ModuleDeclarationSyntax &module)

Private Attributes

= const std::string & targetCell_
= std::ostream & out__

= bool foundTarget__

6.3.1 Detailed Description

Definition at line 46 of file verilog_ utils.hpp.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 CellPrinter()

CellPrinter::CellPrinter (
const std::string & targetCell,

std::ostream & out) [inline], [explicit]

Definition at line 48 of file verilog_ utils.hpp.

6.3.3 Member Function Documentation

6.3.3.1 handle()

void CellPrinter::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 367 of file verilog_ utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.4 Gatelnfo Struct Reference

39

6.3.4 Member Data Documentation

6.3.4.1 foundTarget_

bool CellPrinter::foundTarget_ [private]

Definition at line 55 of file verilog_ utils.hpp.

6.3.4.2 out_

std::ostream& CellPrinter::out [private]

Definition at line 54 of file verilog_ utils.hpp.

6.3.4.3 targetCell_

const std::string& CellPrinter::targetCell_ [private]
Definition at line 53 of file verilog_ utils.hpp.

The documentation for this class was generated from the following files:

» include/verilog_ utils.hpp

= src/verilog_ utils.cpp

6.4 Gatelnfo Struct Reference

#include <LogicExtractor.hpp>

Public Attributes

» slang::parsing:: TokenKind kind

= std::string gateTypeName

= std::vector< std::string > inputSignals
» std::string outputSignal

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

40

Class Documentation

6.4.1 Detailed Description

Definition at line 9 of file LogicExtractor.hpp.

6.4.2 Member Data Documentation

6.4.2.1 gateTypeName

std::string GateInfo::gateTypeName

Definition at line 11 of file LogicExtractor.hpp.

6.4.2.2 inputSignals

std::vector<std::string> Gatelnfo::inputSignals

Definition at line 12 of file LogicExtractor.hpp.

6.4.2.3 kind

slang: :parsing: :TokenKind GateInfo::kind

Definition at line 10 of file LogicExtractor.hpp.

6.4.2.4 outputSignal

std::string GatelInfo::outputSignal

Definition at line 13 of file LogicExtractor.hpp.

The documentation for this struct was generated from the following file:

» include/LogicExtractor.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.5 Groupslterator Class Reference

41

6.5 Groupslterator Class Reference

#include <Iterators.hpp>

Public Member Functions

= Groupslterator (si2drGroupsldT groups, si2drErrorT &err)
= ~Groupslterator ()

= void next ()

= bool end ()

= LibGroup get ()

Private Attributes

» si2drGroupsldT groups_
= si2drGroupldT group_
= si2drErrorT & err__

6.5.1 Detailed Description

Definition at line 9 of file Iterators.hpp.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 Groupslterator()

GroupsIterator: :GroupsIterator (
si2drGroupsIdT groups,

si2drErrorT & err)

Definition at line 3 of file Iterators.cpp.

6.5.2.2 ~Groupslterator()

GroupsIterator::~GroupsIterator ()

Definition at line 7 of file Iterators.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

42

Class Documentation

6.5.3 Member Function Documentation

6.5.3.1 end()

bool GroupsIterator::end ()
Definition at line 10 of file lterators.cpp.

Here is the caller graph for this function:

[[main'}

6.5.3.2 get()

[monaCheckiore |
[porseirie |

[smcetore |

[functibFile

[Coiesspice |

[veriogioee |

LibGroup GroupsIterator::get ()

Definition at line 12 of file Iterators.cpp.

Here is the caller graph for this function:

monoCheckLibFile
parseLibFile
[spicetivfile

funcLibFile

[Coiesveriog |

[Somerciierie |

LibraryComparator
LibraryComparator

[hrreoge |

[oriemons |

[hiessupercel

UibFile:logic

[senermtsroneron |
[seneatimingean |

[mmstaatarnd |

. [oemermecetison |
{ Ubrile:parse |

generateTimingison

[t |

[UbFilezmono

supercellibile

[Goriesparse

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.5 Groupslterator Class Reference

43

6.5.3.3 next()

void GroupsIterator::next ()
Definition at line 9 of file Iterators.cpp.

Here is the caller graph for this function:

ibraryComparator:
LibraryComparator

funcLibFile UbFilelogic |
generateCelljson
monoCheckLibFile | UbFilezmono_ | Libile:parse

parseibrile |

cetire | Gbresapce |
Ubfirveriog | Ubfiessuperce

veogerie |

supercellLibFile |

6.5.4 Member Data Documentation

6.5.4.1 err_

si2drErrorT& GroupsIterator::err_ [private]

Definition at line 20 of file Iterators.hpp.

6.5.4.2 group_

si2drGroupIdT GroupsIterator::group_ [private]

Definition at line 19 of file Iterators.hpp.

6.5.4.3 groups_

s5i2drGroupsIdT GroupsIterator::groups_ [private]

Definition at line 18 of file Iterators.hpp.

The documentation for this class was generated from the following files:

= include/lterators.hpp

= src/lterators.cpp

generatepowerjson |

generateTimingjson |

[comstamarnn |

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

44 Class Documentation

6.6 LibAttribute Class Reference

#include <LibAttribute.hpp>

Public Member Functions

» LibAttribute (si2drAttrldT attr, si2drErrorT &err)
= ~LibAttribute ()

= std::string getName ()

= bool isComplex ()

= si2drValuesldT getValues ()

= long int getint ()

= double getFloat ()

= std::string getString ()

= bool getBoolean ()

Private Attributes

= si2drAttrldT attr__
= si2drErrorT & err__

6.6.1 Detailed Description

Definition at line 8 of file LibAttribute.hpp.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 LibAttribute()

LibAttribute: :LibAttribute (
si2drAttrIdT attr,

si2drErrorT & err)

Definition at line 3 of file LibAtrribute.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.6 LibAttribute Class Reference

45

6.6.2.2 ~LibAttribute()
LibAttribute: :~LibAttribute ()

Definition at line 5 of file LibAtrribute.cpp.

6.6.3 Member Function Documentation

6.6.3.1 getBoolean()

bool LibAttribute::getBoolean ()
Definition at line 25 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibraryComparator:
LibraryComparator

[Tuncibrie [oriesooi |
[monoGheckibrie [Giesmono |——»] Goriesparse |—»{ generateca ; [bAAbuiesgeiBooiean |
["parseLibile
[supercatibrie |——»{ UbFiessupercel
[socemprie | [oitesspce | »| Ubiesveriog |
[verilogLibFile
6.6.3.2 getFloat()
double LibAttribute::getFloat ()
Definition at line 18 of file LibAtrribute.cpp.
Here is the caller graph for this function:
@I ["LibFilezmono }uﬁbﬂle parse ‘ - -

[superciiofie | »{ Goriemuper |
[Soetorie [Gorierspie | »{ Ubrieveros |
[verogiorie |

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

46 Class Documentation

6.6.3.3 getint()

long int LibAttribute::getInt ()
Definition at line 16 of file LibAtrribute.cpp.
Here is the caller graph for this function:
LibraryComparator

monoCheckLibFile {L ile::] | ibFile:p
parseLibFile

(o]

[supercellLibFile] [LibFile::supercell]

['smceubme] { LibFile::spice] [LibFile::verilog]

L
verilogLibFile

6.6.3.4 getName()

std::string LibAttribute::getName ()
Definition at line 7 of file LibAtrribute.cpp.

Here is the caller graph for this function:

[monocheciinrie | | Doripone |
“ocetire [ortespee |

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.6 LibAttribute Class Reference

47

6.6.3.5 getString()

std::string LibAttribute::getString ()
Definition at line 20 of file LibAtrribute.cpp.

Here is the caller graph for this function:

UbraryComparator.
LibraryComparator

[Fonctibrie [heioge |
[monoGhecklbie | [orresmans |
[parsetorie |
[
[viceivie | { Cortersoe | Geriervatiog | »{ UsFiessperan
[[veriogivie |

[Supercetiorie |

6.6.3.6 getValues()

si2drValuesIdT LibAttribute::getValues ()
Definition at line 14 of file LibAtrribute.cpp.

Here is the caller graph for this function:

funcLbrile UbFileriogic
| Ubfiledogic |

\ SupercellLbFle [ubitessupercel

[verloglivFile

6.6.3.7 isComplex()

bool LibAttribute::isComplex ()

Definition at line 12 of file LibAtrribute.cpp.

T Gorie:porse |

[seneatroerion |

[senersterimingison |

sk s |

[oiemons |+ riezporse || geneteCetizon

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

48 Class Documentation

6.6.4 Member Data Documentation

6.6.4.1 attr_

si2drAttrIdT LibAttribute::attr_ [privatel

Definition at line 21 of file LibAttribute.hpp.

6.6.4.2 err_

si2drErrorT& LibAttribute::err [private]
Definition at line 22 of file LibAttribute.hpp.

The documentation for this class was generated from the following files:

= include/LibAttribute.hpp
= src/LibAtrribute.cpp

6.7 LibFile Class Reference

#include <LibFile.hpp>

Public Member Functions

LibFile (const std::string &filepath, const std::string &loggername)
Constructs a LibFile object with specified file path and logger name.

= ~LibFile ()
= void writeJsonToFile ()

Writes the JSON data stored in the object to a file.
= void parse ()

Parses the Liberty file and extracts library information into a JSON structure.
= void modify ()
= void mono (const bool is_slew)
Validates that lookup tables are monotonically increasing with respect to the output load.

= void supercell (const int chain_length, const std::vector< std::string > &cell_names)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 49

Creates supercells based on standard cells in the library file.
= void verilog (const int chain_length, const std::vector< std::string > &cell_names)
Generates Verilog files for cell validation based on the library file.
= void spice (const int chain_length, const std::vector< std::string > &cell_names, const std::string
&verilog_lib_file, const std::string &spice_lib_file)
Generates a SPICE netlist for the library based on a temporary Verilog file, using the V2LVS tool.
= std::map< std::string, std::string > logic (const std::string &cell_name)

Retrieves the logic functions for the output pins of a specified cell within the Liberty file.

Public Attributes

» std::shared_ptr< spdlog::logger > logger__
= std::filesystem::path filepath_

» std::string basename__

= std::string filename_

= std::string libname_ =

nn

= std:string jsonname_ =

= std::string loggername_ =

= json lib_json_ = json::object()

Private Member Functions

void read ()
Reads the Liberty file specified by the filename_ member variable.
= bool checkTimingArcMonotonicity (const json &cell, const json &pin, const json &arc, const std«
::string &type, bool is_slew)
Checks if the values in a timing arc are monotonically increasing.
= std::vector< std::string > splitString (const std::string &s)
Splits a string into a vector of tokens, using whitespace as the delimiter.
= void generateRCLines (std::ofstream &outFile, const std::string &netName, int instancelndex, bool
isFinalStage)
Generates RC lines for a given net in either an intermediate or final stage.
= bool modifySpiceNetlist (const std::string &v2lvsSpiceFile, const std::string &finalSpiceFile, const
std::string &targetGlobalLine)

Modifies a SPICE netlist generated by v2lvs, adding metadata, inserting a global line, and adjusting instance

lines within subcircuits to include VDD /VSS connections and generate corresponding R/C lines.

Private Attributes

= si2drErrorT err_
= int process_ = 0
= float voltage_ = 0.0

= int temperature_ = 0

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

50 Class Documentation

6.7.1 Detailed Description

Definition at line 23 of file LibFile.hpp.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 LibFile()

LibFile::LibFile (
const std::string & filepath,

const std::string & loggername)
Constructs a LibFile object with specified file path and logger name.

This constructor initializes a LibFile object with the given file path and creates a logger with the specified

name. It sets up:

= Two logging sinks: a colored console sink and a file sink
= File path information including filename, basename, and a corresponding JSON filename

= Log levels (info for console, debug for file)

Parameters

filepath The path to the file to be processed

loggername | The name for the logger and the log file

Definition at line 15 of file LibFile.cpp.

6.7.2.2 ~LibFile()

LibFile::~LibFile ()

Definition at line 35 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 51

6.7.3 Member Function Documentation

6.7.3.1 checkTimingArcMonotonicity()

bool LibFile::checkTimingArcMonotonicity (

const json & cell,

const json & pin,

const json & arc,

const std::string & timing_arc_name,

bool is_slew) [private]

Checks if the values in a timing arc are monotonically increasing.

This function examines the values in the specified timing arc to ensure they are monotonically increasing.

It checks monotonicity in two dimensions:

1. Across rows (by output load capacitance)

2. Across columns (by input slew, only if is_slew is true)

The function logs detailed information about any non-monotonic values found, including cell name, pin

names, and conditional statements (when clause) if present.

Parameters
cell The JSON object representing the cell being checked
pin The JSON object representing the pin being checked
arc The JSON object representing the timing arc being checked

timing_arc_name

The name of the timing arc to check (e.g., "cell_rise”, "cell_fall")

is_slew

Boolean flag indicating whether to check monotonicity across input slew values

Returns

true if all values in the timing arc are monotonic, false otherwise

Exceptions

None,but | logs errors or warnings for invalid data formats or non-monotonic values

Definition at line 205 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

52 Class Documentation

Here is the caller graph for this function:

| main | { monoCheckLibFile { LibFile::mono } LibFile::checkTimingArcMonotonicity

6.7.3.2 generateRCLines()

void LibFile::generateRCLines (
std::ofstream & outFile,
const std::string & netName,
int <nstancelndez,

bool isFinalStage) [privatel
Generates RC lines for a given net in either an intermediate or final stage.

This function generates SPICE-like resistor-capacitor (RC) lines and writes them to the provided output
file stream. The generated RC structure differs based on whether it's an intermediate stage or the final
stage. In the intermediate stage, an R1-C1-R2 structure is created. In the final stage, a simplified R1-C1

structure is used.

Parameters
outFile The output file stream to write the RC lines to.
netName The name of the net to generate RC lines for. This name is used to construct node

names.

instancelndex | A unique index for the instance, used to create unique component names (R1, CI,
R2).
isFinalStage | A boolean flag indicating whether this is the final stage. If true, a simplified RC

structure is generated. If false, an intermediate RCR structure is generated.

= The function uses predefined default RC values (R1, C1, R2) that are specific to either the inter-

mediate or final stage.
= The CAP_GROUND constant defines the ground node to which capacitors are connected.

= The output is formatted in scientific notation with a precision of 1 before writing the RC lines and

then reset to default.

= Node names are constructed by appending ":1" or ":2" to the netName for intermediate nodes.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 53

// Example usage:

std::ofstream outFile("rc_lines.sp");

LibFile::generateRCLines (outFile, "net123", 5, false); // Generate intermediate RC lines for net
"net123", instance 5 LibFile::generateRCLines(outFile, "net123", 5, true); // Generate final RC

lines for net "net123", instance 5 outFile.close();

Definition at line 931 of file LibFile.cpp.

Here is the caller graph for this function:

‘ main] } spiceLibFile } LibFile::spice } LibFile:modifySpiceNetlist } LibFile::generateRCLines

6.7.3.3 logic()

std::map< std::string, std::string > LibFile::logic (

const std::string & cell_name)
Retrieves the logic functions for the output pins of a specified cell within the Liberty file.

This method searches for a cell with the given name in the parsed Liberty file (either by parsing the file
directly or reading from a JSON representation). It then iterates through the output pins of the cell,
extracting the logic function associated with each pin. The logic functions are stored in a map, where

the key is the pin name and the value is the logic function string.

If the JSON file does not exist, the Liberty file is parsed, and a JSON file is created. If the JSON file
exists but cannot be opened or parsed, an error is logged, and an empty map is returned. If the specified

cell is not found or if no logic functions are found for the cell, a warning is logged.

Parameters

cell_name | The name of the cell for which to retrieve the logic functions.

Returns

A map containing the logic functions for the output pins of the specified cell. The keys of the map
are the pin names, and the values are the corresponding logic function strings. Returns an empty

map if no logic functions are found or if an error occurs during file processing.

Definition at line 1392 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

54 Class Documentation

Here is the call graph for this function:

Groupsiterator::get

LibGroup::getType

™[LibAttribute::getvalues

LibFile::writejsonToFile

LibAttribute::getint

Here is the caller graph for this function:

main |——» funcLibFile —>_

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 55

6.7.3.4 modify()

void LibFile::modify ()

Definition at line 182 of file LibFile.cpp.

6.7.3.5 modifySpiceNetlist()

bool LibFile::modifySpiceNetlist (
const std::string & v2lvsSpiceFile,
const std::string & finalSpiceFile,

const std::string & targetGlobalLine) [private]

Modifies a SPICE netlist generated by v2lvs, adding metadata, inserting a global line, and adjusting
instance lines within subcircuits to include VDD/VSS connections and generate corresponding R/C

lines.

This function reads a SPICE netlist from v21vsSpiceFile, modifies it according to the following rules,

and writes the result to finalSpiceFile:

1. Metadata Comments: Adds a header with application name, version, author, and timestamp.

2. Global Line Insertion: Inserts a specified global line (targetGlobalLine) after the first
. INCLUDE directive.

3. Subcircuit Modifications:

= Adds VDD VSS to the port list of .SUBCKT definitions.

= For each instance line (starting with 'X' or 'x') within a subcircuit:
— Modifies the output pin name by appending ":1".
— Inserts VDD VSS before the module name in the instance line.

— Calls generateRCLines to generate and insert R/C lines for the instance.

4. Comment Handling: Preserves original comments, but processes any pending instance line before

writing the comment.

5. Empty/v2lvs Header Line Skipping: Skips empty lines and lines starting with v2lvs header

comments.

6. *x.GLOBAL Line Skipping:** Skips original .GLOBAL lines.
The function handles case-insensitive .SUBCKT and .ENDS directives. It also manages a previous«

Instanceline buffer to handle instance lines that might need modification before the next line is

processed.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

56 Class Documentation

Parameters

v2lvsSpiceFile The path to the input SPICE netlist file generated by v2lvs.
finalSpiceFile The path to the output SPICE netlist file after modification. This file will be

overwritten if it exists.

targetGlobalLine | The string containing the global line to be inserted after the . INCLUDE directive.

Returns

true if the modification was successful, false otherwise (e.g., if file opening fails).

Note

The function assumes that the second to last token in an instance line is the output net. It also
assumes a specific format for instance lines where VDD /VSS insertion and R/C line generation are
applicable. The generateRCLines method is expected to handle the actual generation of R/C

components.

See also

generateRCLines

Definition at line 1013 of file LibFile.cpp.

Here is the call graph for this function:

| LibFile::generateRCLines |

i LibFile::splitString |

Here is the caller graph for this function:

| main | I spiceLibFile I LibFile::spice | _

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 57

6.7.3.6 mono()

void LibFile::mono (

const bool is_slew)
Validates that lookup tables are monotonically increasing with respect to the output load.

This function checks the following timing data in the current library to ensure monotonicity:

= cell_rise and retaining_rise
= cell_fall and retaining_fall
= rise_transition and retain_rise_slew
= fall_transition and retain_fall_slew

= min_pulse_width constraints (rise_constraint, fall_constraint)

The function first checks if a parsed JSON representation exists. If not, it parses the Liberty file and
creates the JSON file. It then evaluates each timing arc in all cells and reports the pass/fail status at
the end.

Parameters

‘ is_slew ‘ Boolean flag indicating whether to check slew values rather than delay values ‘

The function outputs:

= Number of cells that passed/failed the monotonicity check

= List of cells that failed the check (if any)

Definition at line 331 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

58 Class Documentation

Here is the call graph for this function:

[parsestringTovector |
Valueslterator::end
d generateLutjson
- \ \\ LibAttribute:getValues
N\
L [Valuestteratorinext

\

Q
\

Attributesiterator
next

/

LibFile::checkTimingArcMonotonicity

LibFile::writejsonToFile

[UibAtributezigetint

\

\
LibFile:read

Here is the caller graph for this function:

main [monoCheckLibFile —-

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference

59

6.7.3.7 parse()

void LibFile::parse ()
Parses the Liberty file and extracts library information into a JSON structure.

This method handles the parsing of a Liberty file by:

1. Initializing the SI2 parser interface error handler
2. Reading the Liberty file contents

3. Extracting the library name

4. Processing second-level groups including:

= Cell definitions, which are added to the JSON structure

= Operating conditions, extracting PVT (Process, Voltage, Temperature) values

The parsed data is stored in the lib_json_ member variable, with the following structure:

= "library_name”: Name of the library

= "cells": Array of cell definitions

= "process”: Process value

= "voltage": Voltage value (rounded to 2 decimal places)

= "temperature”: Temperature value

Note

This method creates local scopes to ensure proper cleanup of SI2 Iterators.

Definition at line 116 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

60 Class Documentation

Here is the call graph for this function:

Lil i al
Groupsiterator::get

LibGroup::getType

Attributesiterator::end

LibGroup::getAttrs

parseStringToVector

Valueslterator::end

generatePowerjson generateLutjson

LibAttributer:getValues
o i
Valuesiterator::next

LibAttribute::getName

generateCelljson Groupsiterator:next

L L
v Attributeslterator
next

LibAttribute::getString

Attributeslterator::get

LibAttribute::getint

LibFile::read

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference

61

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator
LibFile::logic

} LibFile::mono ‘ I LibFile::parse

[Lmein |
TspiceLibFile ‘ } LibFile::spice ‘
[verilogLibFile

6.7.3.8 read()

void LibFile::read () [private]

‘L LibFile::supercell

Reads the Liberty file specified by the filename_ member variable.

This function attempts to read a Liberty file and logs the process. It measures the time taken to read

the file and logs any errors encountered during the read operation. If an error occurs, the function logs

the error and terminates the program.

= Logs the start of the read operation.

= Measures the duration of the read operation.

Checks for specific errors (invalid name or syntax error) and logs them.

= Terminates the program with specific exit codes if errors are detected.

= Logs the completion of the read operation and the time taken.

Note

This function uses the spdlog library for logging and the si2drReadLibertyFile function for reading

the Liberty file.

Exceptions

encountered.

This | function will terminate the program with exit codes 301 or 401 if specific errors are

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

62 Class Documentation

Definition at line 77 of file LibFile.cpp.

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

funcLibFile LibFile::logic
monoCheckLibFile [wibFilezmono | | LibFile::parse | LibFile:read
parseLibFile
main
i supercellLibFile ‘ ‘LLibF\Ie:supercell
’—spiceLibFlIe } [LibFilezspice | l LibFi |
verilogLibFile

6.7.3.9 spice()

void LibFile::spice (
const int chain_length,
const std::vector< std::string > & cell_names,
const std::string & wverilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE netlist for the library based on a temporary Verilog file, using the V2LVS tool.

This function automates the process of converting a Verilog representation of the library into a SPICE

netlist suitable for simulation. It involves the following steps:

1. Generates a temporary Verilog file using the verilog method.

2. Checks for the availability of the V2LVS tool in the system's PATH.

3. Constructs and executes the V2LVS command with appropriate options to generate an initial SPICE

netlist.

4. Post-processes the generated SPICE netlist to adjust global signals using the modifySpiceNetlist

method.

5. Logs the progress and any errors encountered during the process.

Parameters
chain_length The length of the transistor chain for Verilog generation.
cell_names A vector of cell names to be included in the Verilog generation.

verilog_lib_file | The path to the Verilog library file used by V2LVS for pin order information.

; " . G 15,2025 20:55:05 for ZibMalidat ¢
spice_lib_file The path to the SPICE library file t& S thefudedin esger'?sérgtgdzgﬁI TS

S

6.7 LibFile Class Reference 63

Note
The function assumes that the verilog method is available and correctly generates a temporary
Verilog file.

The V2LVS tool must be installed and accessible in the system's PATH for this function to work

correctly.
The generated SPICE netlist is post-processed to adjust global signals.
Temporary files (Verilog and intermediate SPICE) are kept for debugging purposes.

Definition at line 1279 of file LibFile.cpp.

Here is the call graph for this function:

[bAibutesgetrioat |
Rerbesterator end
LbGrougertype
[[Ubsrou:geuns |
[bAibe-getsosiean |
parestingrovecir |
[generateLutison |
[ommeratepison | geneateTimingson-
[UbAtbute-getmome |
[oemerateceiieon | [Grovsiertornext

{ Gocromgetiame | || [Tocroumoetormms |

Atributesiterator
et

[UbilezmodiyspiceNetist |— [UbFiesgen]
| UibFile:spice | [bile:parse |
{ torie-veriiog | [Gbitezsupercel |

UbAlezw e

UbAttribute-getint
UbFlesread

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

64 Class Documentation

Here is the caller graph for this function:

main spiceLibFile _

6.7.3.10 splitString()

std::vector< std::string > LibFile::splitString (

const std::string & s) [private]
Splits a string into a vector of tokens, using whitespace as the delimiter.

This function takes a string as input and splits it into a vector of strings, where each element in the
vector represents a token from the original string. Whitespace characters (spaces, tabs, newlines, etc.)

are used as delimiters to separate the tokens.

Parameters

‘ s ‘ The string to be split.

Returns

A vector of strings, where each string is a token from the input string.

Definition at line 889 of file LibFile.cpp.

Here is the caller graph for this function:

| main | { spiceLibFile [LibFile::spice { LibFile::modifySpiceNetlist

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 65

6.7.3.11 supercell()

void LibFile::supercell (
const int chain_length,

const std::vector< std::string > & cell_names)
Creates supercells based on standard cells in the library file.

This method creates supercells by combining standard cells in chains. For each input-output pin pair of
a cell, it creates a supercell entry with naming format: <cellname>X<chain_length><input_pin>«

__ <output_pin>. The results are written to a .map file.

For sequential cells (with clock pins), the chain length is always set to 1 regardless of the requested chain

length.

Parameters

chain_length | The length of the chain for combinational cells

cell_names Vector of specific cell names to process. If empty, all cells will be processed.

Note

Before creating supercells, this method checks for the existence of a JSON representation of the

Liberty file and parses it if not found.

The method will report any requested cells that were not found in the library.

Definition at line 460 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

66 Class Documentation

Here is the call graph for this function:

LibGroup::getType
/ -

/| parsestringTovector
g Valueslterator::end
LibAttribute::getValues

. [Valuesiterator:next
\

/

/7/

[LibFilezwritejsonToFile
(

LibAttribute:getint
LibFile:read

\

Here is the caller graph for this function:

supercellLibFile
spiceLibFile |——>| LibFile::spice |—>| LibFile::verilog

| main

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 67

6.7.3.12 verilog()

void LibFile::verilog (
const int chain_length,

const std::vector< std::string > & cell_names)
Generates Verilog files for cell validation based on the library file.

This function creates Verilog modules for each cell in the specified chain and generates a top-level module

that connects them all together. The process involves:

[y

. Creating supercells based on the specified chain length and cell names
2. Reading the mapping file to identify supercell name relationships

3. Generating individual Verilog modules for each supercell, handling both sequential and combina-

tional cells differently
4. Creating ANSI-style port definitions for each module
5. Using the slang library to build proper syntax trees for Verilog modules
6. Creating a top-level module that instantiates all the individual modules

7. Writing the complete Verilog output to the output file

Sequential cells are instantiated once, while combinational cells are instantiated multiple times based on

the specified chain length.

Parameters

chain_length | The number of times to chain combinational cells together

cell_names Vector of cell names to include in the Verilog generation

Note

The function writes a temporary file during processing that might not be removed when the function

completes (commented out cleanup code).

Definition at line 614 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

68 Class Documentation

Here is the call graph for this function:

‘

UbFilezsupercell | .
" Gbfiieswrefsorore | \

[LibAttribute:getint

N
LibFile:read

Here is the caller graph for this function:

LibFile::spice

spiceLibFile

verilogLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 69

6.7.3.13 writeJsonToFile()

void LibFile::writeJsonToFile ()
Writes the JSON data stored in the object to a file.

This method opens the file specified by jsonname_ and writes the content of lib_json_ with an inden-
tation of 2 spaces. If the file cannot be opened, an error message is logged. Upon successful writing, an

informational message is logged.

Exceptions

‘ None ‘ directly, but std::ofstream operations may throw exceptions

Definition at line 46 of file LibFile.cpp.

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

funcLibFile LibFile::logic
monoCheckLibFile LibFilez:mono E.ibFile::writejsoanile
parseLibFile
main]
i supercellLibFile ‘ ‘LL\bF\Ie::supercell
[spiceLibFile | [LibFile:spice | [LibFile:verilog |
verilogLibFile

6.7.4 Member Data Documentation

6.7.4.1 basename__

std::string LibFile: :basename_

Definition at line 29 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

70

Class Documentation

6.7.4.2 err_

si2drErrorT LibFile::err_ [private]

Definition at line 46 of file LibFile.hpp.

6.7.4.3 filename_

std::string LibFile::filename_

Definition at line 30 of file LibFile.hpp.

6.7.4.4 filepath_

std::filesystem: :path LibFile::filepath_

Definition at line 28 of file LibFile.hpp.

6.7.4.5 jsonname_

std::string LibFile::jsonname_ = ""

Definition at line 32 of file LibFile.hpp.

6.7.4.6 lib_json_

json LibFile::1ib_json_ = json::object()

Definition at line 34 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference

6.7.4.7 libname_

std::string LibFile::libname_ = ""

Definition at line 31 of file LibFile.hpp.

6.7.4.8 logger_

std::shared_ptr<spdlog::logger> LibFile::logger_

Definition at line 27 of file LibFile.hpp.

6.7.4.9 loggername_

std::string LibFile::loggername_ = ""

Definition at line 33 of file LibFile.hpp.

6.7.4.10 process_

int LibFile::process_ = 0 [private]

Definition at line 47 of file LibFile.hpp.

6.7.4.11 temperature_

int LibFile::temperature_ = 0 [private]

Definition at line 49 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

72

Class Documentation

6.7.4.12 voltage_

float LibFile::voltage_ = 0.0 [private]

Definition at line 48 of file LibFile.hpp.

The documentation for this class was generated from the following files:

= include/LibFile.hpp
= src/LibFile.cpp

6.8 LibGroup Class Reference

#include <LibGroup.hpp>

Public Member Functions

» LibGroup (si2drGroupldT group, si2drErrorT &err)
= ~LibGroup ()

= std::string getName ()

» std::string getType ()

= si2drAttrsldT getAttrs ()

= si2drGroupsldT getGroups ()

Private Attributes
= si2drGroupldT group_

» si2drErrorT & err__

6.8.1 Detailed Description

Definition at line 8 of file LibGroup.hpp.

6.8.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.8 LibGroup Class Reference

73

6.8.2.1 LibGroup()

LibGroup: :LibGroup (
si2drGroupIdT group,

si2drErrorT & err)

Definition at line 3 of file LibGroup.cpp.

6.8.2.2 ~LibGroup()

LibGroup: : ~LibGroup ()

Definition at line 5 of file LibGroup.cpp.

6.8.3 Member Function Documentation

6.8.3.1 getAttrs()

si2drAttrsIdT LibGroup::getAttrs ()
Definition at line 19 of file LibGroup.cpp.

Here is the caller graph for this function:

| bGroup:getatrs

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

74 Class Documentation

6.8.3.2 getGroups()

si2drGroupsIdT LibGroup::getGroups ()
Definition at line 21 of file LibGroup.cpp.

Here is the caller graph for this function:

[senerironsion |

TorayComper [s o |
e

[Toen son | ~,
[foncibrie [[brieogic | | UbGroup:getGroups |
[monoCheckuibfite | [UbFiezmono | T Griere | [oeneratecelison |
[[parsetibrite |
o —) ()

[oriervertiog

{ UbFile:supercell

[ertogtorie |

Soprcailoe |

6.8.3.3 getName()

std::string LibGroup::getName ()
Definition at line 7 of file LibGroup.cpp.

Here is the caller graph for this function:

LibraryComparator:
Uvapycomparator
{functbrie [oieogi |
[monoCheckiibfie [bfieimona T Gorieiparse
[parsetirie

[|| s |~ SRR

man |
[soperceiiibie | »{ GoFiesspercen

[‘smcesorie | [oriesapice | » Ubfierverios |

[verilogLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference

75

6.8.3.4 getType()

std::string LibGroup::getType ()
Definition at line 14 of file LibGroup.cpp.

Here is the caller graph for this function:

6.8.4 Member Data Documentation

6.8.4.1 err_

si2drErrorT& LibGroup::err [privatel

Definition at line 19 of file LibGroup.hpp.

6.8.4.2 group_

si2drGroupIdT LibGroup::group_ [private]
Definition at line 18 of file LibGroup.hpp.

The documentation for this class was generated from the following files:

» include/LibGroup.hpp
» src/LibGroup.cpp

6.9 LibraryComparator Class Reference

#include <LibraryComparator.hpp>

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

76 Class Documentation

Public Member Functions

= LibraryComparator (LibFile &ref_libfile, LibFile &comp_libfile, double reltol, double abstol)

Constructor for the LibraryComparator class.
= void generateReport (const std::string &output_file)

Generates a comparison report between the reference and comparison libraries.

Public Attributes

= std::filesystem::path ref_lib_path_
= std::filesystem::path comp_lib_path_

Private Member Functions

void compareCell (const std::string &cell_name, const json &ref_cell, const json &comp_cell,
Table &table)
Compares the output pins of a cell between a reference JSON and a comparison JSON.
= void comparePin (const std::string &cell_name, const std::string &pin_name, const json &ref_pin,
const json &comp_pin, Table &table)
Compares the timing arcs of a given pin between a reference JSON and a comparison JSON.
= void compareTimingArc (const std::string &cell_name, const std::string &pin_name, const std«
::string &timing__type, const json &ref_timing_arc, const json &comp_timing_arc, Table &table)
Compares a timing arc between two JSON objects.
» void comparelLut (const std::string &cell_name, const std::string &pin_name, const std::string
&timing_type, const std::string &related_pin, const std::string &arc_name, const json &ref_lut,
const json &comp_lut, Table &table)

Compares lookup tables (LUTs) between reference and comparison libraries for a specific timing arc.

Private Attributes

= json ref_json_

= json comp_json__

double reltol_

double abstol__

6.9.1 Detailed Description

Definition at line 19 of file LibraryComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 77

6.9.2 Constructor & Destructor Documentation

6.9.2.1 LibraryComparator()

LibraryComparator: :LibraryComparator (
LibFile & ref_libfile,
LibFile & comp_libfile,
double reltol,

double abstol)
Constructor for the LibraryComparator class.

Initializes a LibraryComparator object by loading JSON data from reference and comparison library files.
If JSON files don't exist, parses the library files first and creates the JSON files.

The constructor performs the following steps:

1. Looks for reference JSON file, parses library file if not found
2. Loads reference JSON data into ref_json_ member

3. Looks for comparison JSON file, parses library file if not found
4. Loads comparison JSON data into comp_json_ member

5. Stores file paths and initializes tolerance values for comparison

Parameters
ref_libfile Reference library file object
comp__libfile | Comparison library file object
reltol Relative tolerance for numerical comparisons (default defined elsewhere)
abstol Absolute tolerance for numerical comparisons (default defined elsewhere)

Definition at line 21 of file LibraryComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

78 Class Documentation

Here is the call graph for this function:

[Gmucsl(eramr: get
[tibGroupigetType

u]

[Atributesiterator::end

LibGroup:getAttrs.

LibAttribute::getBoolean
parsestringTovector

Valueslterator::end
LibAttribute::getValues
Valueslterator:next

[generatepowerjson | generateLujson |

E vson |—»] 3|

LibAttribute:getName

generateCelljson Emleralor inext
L I L]

Attributesiterator
next

LibAttribute:getstring

LibFilezparse [Attributesiterator:get |
_ LibFile:writejsonToFile

LibAttribute:getint
Libilezread

6.9.3 Member Function Documentation

6.9.3.1 compareCell()

void LibraryComparator::compareCell (

const std::string & cell_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 79

const json & ref_cell,
const json & comp_cell,

Table & table) [privatel

Compares the output pins of a cell between a reference JSON and a comparison JSON.

This function iterates through the output pins of the comparison cell and checks if each pin exists in the
reference cell. If a pin is found in both cells, it calls the comparePin function to compare the details of
the pin. If a pin is not found in the reference cell, a warning is logged. If the comparison cell does not

contain any output pins, an informational message is logged.

Parameters

cell_name | The name of the cell being compared.

ref_cell The reference JSON object containing the cell data.

comp__cell | The comparison JSON object containing the cell data.

table The table object where the comparison results are stored.

Definition at line 301 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator:: | LibraryComparator:: | LibraryComparator:: | LibraryComparator::
compareCell | comparePin | compareTimingArc | comparelLut

Here is the caller graph for this function:

LibraryComparator:: LibraryComparator::

I main I | compareLibFiles generateReport compareCell

6.9.3.2 comparelut()

void LibraryComparator: :compareLut (
const std::string & cell_name,

const std::string & pin_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

80

Class Documentation

const std::string & timing_type,
const std::string & related_pin,
const std::string & arc_name,
const json & ref_lut,

const json & comp_lut,

Table & table) [private]

Compares lookup tables (LUTs) between reference and comparison libraries for a specific timing arc.

This function

compares the lookup table values between reference and comparison libraries for a given

timing arc, checking the consistency of indices and values. It verifies that the indices match between

libraries and then compares each value in the LUT against relative and absolute tolerance thresholds.

Any discrepancies that exceed the tolerance limits are recorded in the provided table.

Parameters
cell_name The name of the cell containing the LUT.
pin_name The name of the pin associated with the LUT.

timing__type

The timing type of the arc (e.g., "rise_transition”, "fall_transition”).

related_pin

The related pin for the timing arc.

arc_name The name of the specific timing arc being compared.

ref_lut The lookup table from the reference library (in JSON format).

comp__lut The lookup table from the comparison library (in JSON format).

table Table object to store comparison results for any mismatches found.
Note

The function logs various information/warning/error messages:

= Logs index mismatches as warnings

= Logs value mismatches as debug messages

= Logs format errors in LUT structure as errors

= Records values exceeding tolerance in the provided table

The comparison uses both relative tolerance (reltol_) and absolute tolerance (abstol_) to determine

if values

Definition at |

Here is the ca

differ significantly.

ine 98 of file LibraryComparator.cpp.

ller graph for this function:

["Libraryc [Libraryc: : [Libraryc
| compareCell | comparepi compareTi

- - [LibraryComparator::
compareLibFiles | Senerateheport

LibraryComparator:
compareLut

9/

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 81

6.9.3.3 comparePin()

void LibraryComparator: :comparePin (
const std::string & cell_name,
const std::string & pin_name,
const json & ref_pin,
const json & comp_pin,

Table & table) [private]
Compares the timing arcs of a given pin between a reference JSON and a comparison JSON.

This function iterates through the timing arcs of the comparison pin and looks for matching timing types
in the reference pin. If a matching timing type is found, it calls the compareTimingArc function to

compare the timing arcs. If a timing type is not found in the reference JSON, a warning is logged.

Parameters

cell_name | The name of the cell containing the pin.

pin_name | The name of the pin to compare.

ref_pin The reference JSON object containing the pin's data.

comp_pin | The comparison JSON object containing the pin's data.

table A reference to a Table object where comparison results are stored.

Definition at line 261 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator:: LibraryComparator:: LibraryComparator::
comparePin compareTimingArc comparelLut

Here is the caller graph for this function:

- | = ‘ LibraryComparator:: ‘ LibraryComparator::
‘ main l 1 compareLibFiles l ‘ generateReport ‘ compareCell

LibraryComparator::
comparePin

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

82 Class Documentation

6.9.3.4 compareTimingArc()

void LibraryComparator::compareTimingArc (
const std::string & cell_name,
const std::string & pin_name,
const std::string & timing_type,
const json & ref_timing_arc,
const json & comp_timing_arc,

Table & table) [privatel
Compares a timing arc between two JSON objects.

This function compares a specific timing arc (e.g., cell_rise, cell_fall, rise_transition, fall_transition)
between a reference JSON object and a comparison JSON object. It extracts the related pin from the
reference timing arc and iterates through a predefined list of arc names. If an arc name is found in the
comparison timing arc, it checks if the same arc name exists in the reference timing arc. If both exist,
it calls the comparelLut function to compare the LUT data associated with the arc. If the arc name is

found in the comparison JSON but not in the reference JSON, a warning message is logged.

Parameters
cell_name The name of the cell.
pin_name The name of the pin.
timing__type The type of timing (e.g., "combinational”, "sequential”).
ref_timing_arc The reference JSON object containing the timing arc information.
comp_timing_arc | The comparison JSON object containing the timing arc information.
table The table to store comparison results.

Definition at line 220 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator:: LibraryComparator::
compareTimingArc compareLut

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 83

Here is the caller graph for this function:

. m \ LibraryComparator:: \ LibraryComparator:: \ LibraryComparator:: | LibraryComparator::
{ compareLibFiles 1 P 1 compareCell | comparePin | compareTimingArc

6.9.3.5 generateReport()

void LibraryComparator: :generateReport (

const std::string & output_file)
Generates a comparison report between the reference and comparison libraries.

This function generates a detailed comparison report between the reference library and the comparison
library. The report includes metadata such as the reference and comparison library paths, absolute and
relative tolerances, and the application details. It also includes a legend explaining various symbols used

in the report.

The function iterates through each cell in the comparison library, compares it with the corresponding cell
in the reference library, and generates a table of differences. If there are any differences, it calculates
summary statistics such as the average and maximum differences, and the number of outliers. The

results are written to the specified output file in either Markdown or plain text format.

Parameters

output_file | The path to the output file where the report will be written.

Definition at line 343 of file LibraryComparator.cpp.

Here is the call graph for this function:

‘ LibraryComparator:: ‘ LibraryComparator:: ‘ LibraryComparator:: ‘ LibraryComparator::

‘ compareCell ‘ comparePin ‘ compareTimingArc ‘ compareLut

LibraryComparator::
generateReport

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

84

Class Documentation

Here is the caller graph for this function:

i comparelLibFiles |

6.9.4 Member Data Documentation

6.9.4.1 abstol_

double LibraryComparator::abstol_ [private]

Definition at line 30 of file LibraryComparator.hpp.

6.9.4.2 comp_json_

json LibraryComparator::comp_json_ [private]

Definition at line 28 of file LibraryComparator.hpp.

6.9.4.3 comp_lib_path_

std::filesystem: :path LibraryComparator::comp_lib_path_

Definition at line 23 of file LibraryComparator.hpp.

6.9.4.4 ref_json_

json LibraryComparator::ref_json_ [private]

Definition at line 27 of file LibraryComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 85

6.9.4.5 ref_lib_path_

std::filesystem::path LibraryComparator::ref_lib_path_

Definition at line 22 of file LibraryComparator.hpp.

6.9.4.6 reltol_

double LibraryComparator::reltol_ [privatel
Definition at line 29 of file LibraryComparator.hpp.

The documentation for this class was generated from the following files:

= include/LibraryComparator.hpp
= src/LibraryComparator.cpp

6.10 LogicComparator Class Reference

#include <LogicComparator.hpp>

Public Member Functions

= LogicComparator (const std::map< std::string, std::string > &ref_outpin_map, const std::map<
std::string, std::string > &comp_outpin_map, const std::string &cell_name)
= void logic ()
This function demonstrates the usage of the exprtk library to evaluate a boolean logic expression.
» std::string preprocessExpression (const std::string &input_expr)
Preprocesses a logical expression string to prepare it for evaluation.
= bool extractVariables (const std::string &exprl, const std::string &expr2, std::vector< std::string
> &sorted_vars)
Extracts and validates variables from two expressions, ensuring they match.
= void compareSingleExpressionPair (const std::string &ref_expression_processed, const std::string
&comp__expression_processed, const std::vector< std::string > &sorted_vars, PinComparisonResult
&result)
Compares two preprocessed logic expression strings for equivalence. Internal helper function.
= void compareCellLogic ()
Compares logic for all output pins defined in the input maps, and stores results in all_pin__results_.
= void generateReport (const std::string &output_file)

Generates a comparison report file based on cell logic comparison results.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

86 Class Documentation

Private Attributes

= std::map< std::string, std::string > ref_outpin_map_
= std::map< std::string, std::string > comp_outpin_map_
= std::string cell_name_

= std::map< std::string, PinComparisonResult > all_pin_results_

6.10.1 Detailed Description

Definition at line 38 of file LogicComparator.hpp.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 LogicComparator()

LogicComparator: :LogicComparator (
const std::map< std::string, std::string > & ref_outpin_map,
const std::map< std::string, std::string > & comp_outpin_map,

const std::string & cell_name)

Definition at line 3 of file LogicComparator.cpp.

6.10.3 Member Function Documentation

6.10.3.1 compareCellLogic()

void LogicComparator: :compareCellLogic ()
Compares logic for all output pins defined in the input maps, and stores results in all_pin_results_.
Compares the logic expressions for each output pin of a cell between a reference and a comparison design.

This method performs a detailed comparison of the logic expressions associated with each output pin of
a cell. It iterates through each unique pin name found in both the reference and comparison designs,
retrieves their corresponding logic expressions, preprocesses them, extracts and validates the variables
used, and then compares the processed expressions. The results of each pin comparison, including any

errors or discrepancies, are stored in the all_pin_results_ map.

The comparison process includes the following steps:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 87

1. Pin Collection: Collects all unique pin names from both the reference (ref_outpin_map_) and
comparison (comp_outpin_map_) maps.

2. Iteration: lterates through each unique pin name.

3. Expression Retrieval: Retrieves the raw logic expressions for the current pin from both the
reference and comparison maps. If a pin is missing in either map, an error is logged, and the
comparison is marked as impossible for that pin.

4. Preprocessing: Preprocesses the raw expressions to simplify them and remove any irrelevant
characters or formatting. If preprocessing results in an empty expression, an error is logged, and
the comparison is marked as impossible.

5. Variable Extraction and Validation: Extracts the variables used in both expressions and validates
that the sets of variables match. If the variable sets do not match, an error is logged, and the
comparison is marked as impossible.

6. Expression Comparison: Compares the preprocessed expressions using the extracted variables.
This step determines whether the logic functions represented by the expressions are equivalent.

7. Result Storage: Stores the detailed results of the pin comparison, including the raw and processed
expressions, any errors encountered, and the comparison result, in the all_pin_results_ map.

Note
The spdlog library is used for logging information, warnings, and errors throughout the comparison
process.
The preprocessExpression method is used to simplify the raw logic expressions before compar-
ison.
The extractVariables method is used to extract and validate the variables used in the logic
expressions.
The compareSingleExpressionPair method is used to compare the preprocessed expressions
and determine whether they are equivalent.

See also

preprocessExpression
extractVariables

compareSingleExpressionPair

Definition at line 812 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

88 Class Documentation

Here is the call graph for this function:

LogicComparator::compare
SingleExpressionPair

LogicComparator::extract
Variables B >-| isldentifier

LogicComparator::preprocess
Expression isOperator

Here is the caller graph for this function:

funcLibFile

6.10.3.2 compareSingleExpressionPair()

void LogicComparator: :compareSingleExpressionPair (
const std::string & ref_expression_processed,
const std::string & comp_ezpression_processed,
const std::vector< std::string > & sorted_wvars,

PinComparisonResult & result)
Compares two preprocessed logic expression strings for equivalence. Internal helper function.

Compares two boolean expressions for logical equivalence using a truth table.

Template Parameters

T | The numeric type used by ExprTk (e.g., double, float).

Parameters

ref_expression__processed The preprocessed reference logic expression.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference

89

Parameters

comp__expression__processed

The preprocessed comparison logic expression.

sorted_vars

A sorted vector of unique variable names common to both expressions.

result

Reference to a PinComparisonResult object to store detailed results.

This function takes two processed boolean expressions (ref_expression_processed and comp__expression«

_processed), a sorted list of variable names (sorted_vars), and a PinComparisonResult struct to store

the results. It evaluates both expressions for all possible combinations of variable values and compares

the resulting truth tables.

The function uses the ExprTk library to parse and evaluate the boolean expressions. It generates a truth

table for each expression and compares the results. If the truth tables are identical, the expressions are

considered logically equivalent.

Parameters

ref_expression__processed

The processed reference boolean expression.

comp__expression__processed

The processed comparison boolean expression.

sorted_vars

A sorted vector of variable names used in the expressions.

result A PinComparisonResult struct to store the comparison results,
including processed expressions, compilation status, equivalence, error
messages, and the generated truth tables.
Note

The function limits the number of variables to 20 to prevent excessively large truth tables. It also

performs overflow checking on the number of combinations.

The function uses spdlog for logging debug, warning, and error messages.

The function assumes that the input expressions are valid boolean expressions containing only the

variables listed in sorted_vars.

Definition at line 553 of file LogicComparator.cpp.

Here is the caller graph for

this function:

| main |

LogicComparator::compare

T -
| funcLibFile CellLogic

LogicComparator::compare
SingleExpressionPair

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

90 Class Documentation

6.10.3.3 extractVariables()

bool LogicComparator: :extractVariables (
const std::string & ezpri_raw,
const std::string & ezpr2_raw,

std::vector< std::string > & sorted_vars)
Extracts and validates variables from two expressions, ensuring they match.

This function parses two raw expression strings (exprl_raw and expr2_raw) to identify potential variable

names. It uses a regular expression to find identifiers and then validates them against a set of rules:

1. The identifier must be a valid identifier as determined by the isIdentifier function.

2. The identifier must not be a keyword or function name defined in the keywords set.

The function compares the sets of validated variables from both expressions. If the sets are identical, the
variables are extracted, sorted alphabetically, and stored in the sorted_vars vector. If the sets differ,
an error is reported, and the differences between the sets are logged.

Parameters

exprl_raw | The raw string representation of the first expression.

expr2_raw | The raw string representation of the second expression.

sorted_vars | A vector to store the sorted list of unique variable names if the variable sets from both

expressions match. This vector is cleared if the sets do not match.

Returns

true if the variable sets from both expressions match, indicating that the sorted_vars vector

contains the sorted list of unique variable names. false if the variable sets do not match, indicating
an error.

Note

The isIdentifier function is used to validate potential variable names.
The keywords set contains a list of reserved words that cannot be used as variable names.

The function uses spdlog for logging debug, trace, info, and warning messages.

Definition at line 327 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 91

Here is the call graph for this function:

Here is the caller graph for this function:

e e T S el

6.10.3.4 generateReport()

void LogicComparator: :generateReport (

const std::string & output_file)
Generates a comparison report file based on cell logic comparison results.

Generates a comprehensive report comparing the logic equivalence of a cell's reference and comparison

expressions.

Parameters

output_file | Path to the output report file.

This function performs the following steps:

1. Initialization: Sets up logging and determines the output format (Markdown or plain text) based

on the file extension.

2. File Handling: Opens the specified output file in append mode, creating it if it doesn't exist.

Handles potential file opening errors.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

92 Class Documentation

3. Report Header: Writes a header section to the report, including the cell name, application version,

author, and timestamp.

4. Legend Generation: Creates a legend explaining the status symbols used in the report (e.g., [OK],
INOJ, [NAJ).

5. Table Generation: Creates tables for reference pin functions, comparison pin functions, and the

legend.

6. Pin Result Processing: lterates through the results for each pin, generating detailed information
including:
= Pin Name
= Reference and Comparison Truth Tables (if available)
= Comparison Summary Table:

— Status (Logic Equivalence)

— Raw and Processed Expressions

Compilation Status

— Error Messages (if any)

7. Output: Exports the generated tables and pin results to the output file in the determined format
(Markdown or plain text).

8. Closure: Closes the output file and logs the completion of the report generation.

Parameters

output_file | The path to the output report file. If the file extension is ".md", the report will be

generated in Markdown format; otherwise, it will be generated in plain text.

Note
The function uses spdlog for logging and relies on several helper classes/structs:

= Table: For creating formatted tables.
= MarkdownExporter: For exporting tables to Markdown format.

= LogicComparator: :PinResult: A struct containing the results of the logic comparison for

a single pin.

The function appends to the output file if it already exists.

Definition at line 974 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 93

Here is the caller graph for this function:

6.10.3.5 logic()

void LogicComparator::logic ()
This function demonstrates the usage of the exprtk library to evaluate a boolean logic expression.

It defines a boolean expression "not(A and B) or C” and evaluates it for all possible combinations of
boolean values for the variables A, B, and C. The results are then printed to the console in a tabular

format.

The function utilizes the exprtk library for:

= Defining a symbol table to hold the variables A, B, and C.

= Creating an expression object and registering the symbol table with it.
= Compiling the boolean expression string into the expression object.

= |terating through all possible boolean combinations for A, B, and C.

= Assigning the boolean values to the variables in the symbol table.

» Evaluating the expression using expression.value().

= Printing the input values and the result to the console.

Definition at line 24 of file LogicComparator.cpp.

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

94 Class Documentation

6.10.3.6 preprocessExpression()

std::string LogicComparator: :preprocessExpression (

const std::string & input_expr)
Preprocesses a logical expression string to prepare it for evaluation.

This function performs several steps to transform the input expression:

1. Trims leading/trailing whitespace.

2. Replaces the logical NOT operator 'I' with " not " (except for '=").

A, %) and parentheses.

3. Adds spaces around operators (+,
4. Replaces symbolic operators (+, ", *) with their keyword equivalents (or, xor, and).

5. Tokenizes the expression based on spaces.

6. Inserts implied 'and' operators between operands where necessary. For example, "A B" becomes
"A and B".

7. Handles 'not Identifier' sequences by converting them to 'not(Identifier)'.
8. Reconstructs the final expression string from the processed tokens, adding spaces appropriately.

9. Performs a final cleanup to consolidate multiple spaces and trim the result.

Parameters

input_expr | The input logical expression string.

Returns

The preprocessed logical expression string, ready for evaluation. Returns an empty string if the

input is empty or if no tokens are found after processing.

Note

The function uses spdlog for debugging and tracing.

The function assumes the existence of helper functions isIdentifier and isOperator to classify

tokens.

Definition at line 128 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference

95

Here is the call graph for this function:

isldentifier

isOperator

Here is the caller graph for this function:

(i}] o |

6.10.4 Member Data Documentation

6.10.4.1 all_pin_results__

std::map<std::string, PinComparisonResult> LogicComparator::all_pin_results_ [privatel

Definition at line 86 of file LogicComparator.hpp.

6.10.4.2 cell_name_

std::string LogicComparator::cell_name_ [private]

Definition at line 85 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

96

Class Documentation

6.10.4.3 comp_outpin_map_

std::map<std::string, std::string> LogicComparator::comp_outpin_map_ [private]

Definition at line 84 of file LogicComparator.hpp.

6.10.4.4 ref_outpin_map_

std::map<std::string, std::string> LogicComparator::ref_outpin_map_ [privatel]
Definition at line 83 of file LogicComparator.hpp.

The documentation for this class was generated from the following files:

= include/LogicComparator.hpp

= src/LogicComparator.cpp

6.11 LogicExtractor Class Reference

#include <LogicExtractor.hpp>

Inheritance diagram for LogicExtractor:

slang::syntax::SyntaxVisitor
< LogicExtractor >

LogicExtractor

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 97

Collaboration diagram for LogicExtractor:

slang::syntax::SyntaxVisitor
< LogicExtractor >

LogicExtractor

Public Member Functions

= LogicExtractor (const std::string &targetCell)
= void handle (const slang::syntax::ModuleDeclarationSyntax &module)
Handles a module declaration syntax node.
= void handle (const slang::syntax::PortDeclarationSyntax &portDecl)
Handles a port declaration syntax node.
= void handle (const slang::syntax::NonAnsiPortListSyntax &portList)
Handles a non-ANSI port list in a module.
= void handle (const slang::syntax::NetDeclarationSyntax &netDecl)
Handles a net declaration syntax node.
= void handle (const slang::syntax::PrimitivelnstantiationSyntax &primitivelnst)
Handles the extraction of logic gate information from a primitive instantiation syntax node.
= const std::unordered__map< std::string, Gatelnfo > & getExtractedGates () const
= const std::unordered_set< std::string > & getPrimarylnputs () const
= const std::unordered_set< std::string > & getPrimaryOutputs () const
= const std::unordered_set< std::string > & getInternalWires () const
» std::map< std::string, std::string > getLogicExpressions ()

Extracts logic expressions for all primary output ports of the target cell.

Private Member Functions

» std::string deriveLogicRecursive (const std::string &signalName)
Recursively derives the logic expression for a given signal.
» std::string formatExpression (const Gatelnfo &gatelnfo, const std::vector< std::string > &input«
Exprs)

Formats a logic expression based on the gate type and input expressions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

98

Class Documentation

Private Attributes

= const std::string & targetCell_

= bool inTargetModule_

= bool parsingComplete_

= std::unordered_set< std::string > primarylnputs_

= std::unordered_set< std::string > primaryOutputs_

= std::unordered_set< std::string > internalWires__

» std::unordered__map< std::string, std::string > portDirections_

= std::unordered__map< std::string, Gatelnfo > gateOutputDrivers_
= std::unordered__map< std::string, std::string > logicCache_

6.11.1 Detailed Description

Definition at line 17 of file LogicExtractor.hpp.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 LogicExtractor()

LogicExtractor: :LogicExtractor (

const std::string & targetCell) [inline], [explicit]

Definition at line 20 of file LogicExtractor.hpp.

6.11.3 Member Function Documentation

6.11.3.1 deriveLogicRecursive()

std::string LogicExtractor::deriveLogicRecursive (

const std::string & signalName) [private]

Recursively derives the logic expression for a given signal.

This function traces back the signal to its driving gates and primary inputs, constructing a logic expression

that represents the signal's behavior. It uses memoization to cache previously computed expressions,

avoiding redundant calculations.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 99

Parameters

signalName | The

name of the signal for which to derive the logic expression.

Returns

A string representing the logic expression for the signal.

Exceptions

std::runtime_error

if the signal is not a primary input, a known wire, or driven by a recognized
gate/assignment. Also thrown if an empty input signal name is encountered or

if an internal wire has no identified driver.

The function operates in the following steps:

. Check Cache (Memoization): If the logic expression for the signal is already cached in logic«

Cache_, it is immediately returned.

. Base Case: Is it a primary input? If the signal is a primary input (present in primaryInputs_),

its logic expression is simply its own name.

. Recursive Step: Is it driven by a gate? If the signal is driven by a gate (present in gate«
OutputDrivers_), the function recursively derives the logic expressions for all input signals of the
gate. These input expressions are then used to format the overall expression for the current signal

based on the gate type.
. Handle Assign statements: (Currently not implemented but reserved for future use).

. Error Case: If the signal is not found in any of the above categories, it indicates an error. An
exception is thrown, indicating that the signal is either an undriven internal wire or an unknown

signal.

Definition at line 510 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::derivelLogic [

REauiE e | LogicExtractor::formatExpression

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

100 Class Documentation

Here is the caller graph for this function:

l main l l funcLibFile l extractLogicFromVerilog l ‘I LOg\CEé:rpargts%r;:c:)%gtLogm I L°9|CEXh:$frisigleeﬂVELoglc

6.11.3.2 formatExpression()

std::string LogicExtractor::formatExpression (
const GateInfo & gatelnfo,

const std::vector< std::string > & inputEzprs) [private]
Formats a logic expression based on the gate type and input expressions.

This function takes a Gatelnfo structure describing the gate and a vector of input expressions (strings)
and constructs a logic expression string representing the gate's operation. It handles AND, NAND, OR,
NOR, XOR, XNOR, NOT, and BUF gates. It uses 'x', '+', '*', and 'l"' operators for AND, OR, XOR, and
NOT respectively. If the gate type is unsupported, or if the number of inputs is incorrect for NOT /BUF

gates, or if a gate requiring inputs receives none, an error string is returned, and a warning is logged.

Parameters

gatelnfo A Gatelnfo struct containing information about the gate, including its type

(slang::parsing:: TokenKind) and name.

inputExprs | A vector of strings representing the input expressions to the gate.

Returns

A string representing the formatted logic expression, or an error string if formatting fails due to

unsupported gate type or incorrect number of inputs.

Definition at line 584 of file LogicExtractor.cpp.

Here is the caller graph for this function:

r - r [LogicExtractor::getLogic [LogicExtractor::deriveLogic :I
main { funcLibFile { extractLogicFromVerilog J 1 Expressions 1 Recursive LogicExtractor::formatExpression

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 101

6.11.3.3 getExtractedGates()

const std::unordered_map< std::string, GateInfo > & LogicExtractor::getExtractedGates () const [inline]
Definition at line 37 of file LogicExtractor.hpp.

Here is the caller graph for this function:

extractAndPrintNetlistinfo _

6.11.3.4 getInternalWires()

const std::unordered_set< std::string > & LogicExtractor::getInternalWires () const [inline]
Definition at line 42 of file LogicExtractor.hpp.

Here is the caller graph for this function:

extractAndPrintNetlistinfo _

6.11.3.5 getlLogicExpressions()

std::map< std::string, std::string > LogicExtractor::getLogicExpressions ()
Extracts logic expressions for all primary output ports of the target cell.

This method iterates through the primary output ports, derives the logic expression for each, and stores
the result in a map. If an error occurs during the derivation of logic for a particular output, an error

message is stored in the map instead.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

102 Class Documentation

Returns

A map where the key is the output port name (std::string) and the value is the corresponding logic
expression (std::string). If AST parsing is not complete or the target module is not found, an empty
map is returned. If an error occurs during logic derivation for a specific output, the corresponding

value in the map will be an error message.

Definition at line 451 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::deriveLogic - " -
_—" Recursive >l LogicExtractor::formatExpression

Here is the caller graph for this function:

| main |—>| funcLibFile |—>| extractLogicFromVerilog l—_

6.11.3.6 getPrimarylnputs()

const std::unordered_set< std::string > & LogicExtractor::getPrimaryInputs () const [inline]
Definition at line 40 of file LogicExtractor.hpp.

Here is the caller graph for this function:

extractAndPrintNetlistInfo _

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 103

6.11.3.7 getPrimaryOutputs()

const std::unordered_set< std::string > & LogicExtractor::getPrimaryOutputs () const [inline]
Definition at line 41 of file LogicExtractor.hpp.

Here is the caller graph for this function:

LogicExtractor::getPrimary

extractAndPrintNetlistinfo Outputs

6.11.3.8 handle() (/51

void LogicExtractor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)
Handles a module declaration syntax node.

This function is the entry point for processing a module declaration. It checks if the module is the target
module and, if so, extracts relevant information such as primary inputs, primary outputs, and internal

wires. It also visits the children of the module node to process ports, declarations, and instances.

The function ensures that the target module is only processed once and that parsing stops after the

target module is found.

Parameters

‘ module ‘ A reference to the module declaration syntax node.

Definition at line 18 of file LogicExtractor.cpp.

6.11.3.9 handle() 12/

void LogicExtractor::handle (

const slang::syntax::NetDeclarationSyntax & netDecl)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

104 Class Documentation

Handles a net declaration syntax node.

This function processes a net declaration syntax node, extracting the names of declared wires. It checks if
the current scope is within the target module and avoids adding ports again if they were already declared

as nets. The extracted wire names are added to the internal wires set.

Parameters

‘ netDecl ‘ A reference to the NetDeclarationSyntax node to handle.

Definition at line 277 of file LogicExtractor.cpp.

6.11.3.10 handle() t3/s1

void LogicExtractor::handle (

const slang::syntax::NonAnsiPortListSyntax & portList)
Handles a non-ANSI port list in a module.

This method iterates through the ports in a non-ANSI port list, extracts the port name, determines its
direction (input, output, or inout), and adds it to the appropriate sets (primarylnputs_, primaryOutputs«
. internaIWires_). It also handles different types of port declarations, including implicit, explicit, and

empty ports.

Parameters

‘ portList ‘ A reference to the NonAnsiPortListSyntax object representing the port list.

= Skips processing if not in the target module (inTargetModule__ is false).

» Extracts port names from ImplicitNonAnsiPortSyntax and ExplicitNonAnsiPortSyntax.
= Handles PortConcatenationSyntax by logging a warning and skipping the port.

= Skips EmptyNonAnsiPortSyntax (placeholders).

= Uses the portDirections_ map to determine the direction of each port.

= Adds ports to primarylnputs_ and internalWires_ if the direction is "input”.

= Adds ports to primaryOutputs_ and internalWires__ if the direction is "output”.

= Adds ports to both primarylnputs_ and primaryOutputs_ if the direction is "inout".

= Logs warnings for ports with unknown or missing directions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 105

Note

Logs warnings if the port name cannot be determined.

This method does not call visitDefault.

Definition at line 179 of file LogicExtractor.cpp.

6.11.3.11 handle() /5]

void LogicExtractor::handle (

const slang::syntax::PortDeclarationSyntax & portDecl)

Handles a port declaration syntax node.

This method extracts information about port declarations within a SystemVerilog module, including the

port's direction (input, output, or inout) and name. It updates internal data structures to track primary

inputs, primary outputs, internal wires, and port directions.

Parameters

portDecl | A reference to the PortDeclarationSyntax node being processed.

It first checks if the current processing context is within the target module. If not, the method

returns early.

It determines the port's direction by inspecting the port header (VariablePortHeaderSyntax or Net«
PortHeaderSyntax). The direction is extracted using valueText () to handle keywords represented

as text tokens.
It iterates through the declarators in the port declaration to extract port names.

If multiple direction declarations are found for the same port, a warning is logged, and the first

declared direction is retained.
Based on the port's direction, the port name is added to the appropriate sets:

— primaryInputs_: For input and inout ports.
— primaryOutputs_: For output and inout ports.
— internalWires_: For all ports (input, output, inout, and ports with unknown directions).

If a port has an unknown or missing direction, it's treated as an internal wire, and a warning is

logged.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

106 Class Documentation

= The method avoids calling visitDefault to prevent unexpected revisits of syntax nodes.

Note

The logicCache_ update is commented out, indicating it's part of a later processing step.

Warning
Logs warnings for port declarations without headers, port declarators without names, and multiple

direction declarations for the same port.

Definition at line 92 of file LogicExtractor.cpp.

6.11.3.12 handle() rs/s]

void LogicExtractor::handle (

const slang::syntax::PrimitiveInstantiationSyntax & primitivelInst)
Handles the extraction of logic gate information from a primitive instantiation syntax node.

This method processes a primitive instantiation, extracting the gate type, input signals, and output
signal. It populates the gateOutputDrivers_ map, which stores the driving gate information for each

output signal. It also identifies internal wires and checks for multiple drivers on the same signal.

Parameters

primitivelnst | A reference to the PrimitivelnstantiationSyntax node representing the gate instance.

Definition at line 309 of file LogicExtractor.cpp.

6.11.4 Member Data Documentation

6.11.4.1 gateOutputDrivers_

std: :unordered_map<std::string, GateInfo> LogicExtractor::gateOutputDrivers_ [privatel

Definition at line 63 of file LogicExtractor.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 107

6.11.4.2 inTargetModule_

bool LogicExtractor::inTargetModule_ [private]

Definition at line 50 of file LogicExtractor.hpp.

6.11.4.3 internalWires_

std::unordered_set<std::string> LogicExtractor::internalWires_ [private]

Definition at line 56 of file LogicExtractor.hpp.

6.11.4.4 logicCache_

std: :unordered_map<std::string, std::string> LogicExtractor::logicCache_ [private]

Definition at line 66 of file LogicExtractor.hpp.

6.11.4.5 parsingComplete__

bool LogicExtractor::parsingComplete_ [private]

Definition at line 51 of file LogicExtractor.hpp.

6.11.4.6 portDirections_

std: :unordered_map<std::string, std::string> LogicExtractor::portDirections_ [private]

Definition at line 60 of file LogicExtractor.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

108

Class Documentation

6.11.4.7 primarylnputs_

std: :unordered_set<std::string> LogicExtractor::primaryInputs_ [private]

Definition at line 54 of file LogicExtractor.hpp.

6.11.4.8 primaryOutputs_

std: :unordered_set<std::string> LogicExtractor::primaryOutputs_ [private]

Definition at line 55 of file LogicExtractor.hpp.

6.11.4.9 targetCell_

const std::string& LogicExtractor::targetCell_ [private]

Definition at line 49 of file LogicExtractor.hpp.

The documentation for this class was generated from the following files:

» include/LogicExtractor.hpp
= src/LogicExtractor.cpp

6.12 ModuleRewriter Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for ModuleRewriter:

slang::syntax::SyntaxRewriter
< ModuleRewriter >

ModuleRewriter

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.12 ModuleRewriter Class Reference 109

Collaboration diagram for ModuleRewriter:

slang::syntax::SyntaxRewriter
< ModuleRewriter >

ModuleRewriter

Public Member Functions

= ModuleRewriter (const std::vector< std::string > &inputPins, const std::vector< std::string >
&outputPins, const std::pair< std::string, std::string > &supercell_entry, int instance_count, std«
::shared__ptr< spdlog::logger > logger)
= void handle (const slang::syntax::SyntaxNode &node)
Processes a syntax node in the module's AST.

= void handle (const slang::syntax::ModuleDeclarationSyntax &module)

Public Attributes

» std::shared_ptr< spdlog::logger > logger_

Private Attributes

= const std::vector< std::string > & inputPins_

= const std::vector< std::string > & outputPins_

= const std::string cellName_

= const std::string moduleName__

= std::map< std::string, std::string > portInfoMap_
= int depth_

= int instance_count__

6.12.1 Detailed Description

Definition at line 59 of file verilog_ utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

110 Class Documentation

6.12.2 Constructor & Destructor Documentation

6.12.2.1 ModuleRewriter()

ModuleRewriter: :ModuleRewriter (
const std::vector< std::string > & inputPins,
const std::vector< std::string > & outputPins,
const std::pair< std::string, std::string > & supercell_entry,
int <nstance_count,

std::shared_ptr< spdlog::logger > logger) [inline], [explicit]

Definition at line 61 of file verilog_ utils.hpp.

6.12.3 Member Function Documentation

6.12.3.1 handle() r1/21

void ModuleRewriter::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 406 of file verilog_ utils.cpp.

6.12.3.2 handle() r2/21

void ModuleRewriter::handle (

const slang::syntax::SyntaxNode & node)
Processes a syntax node in the module's AST.

This method is called for each syntax node during the traversal of the AST. It logs debug information
about the current node and continues processing its child nodes by recursively calling the appropriate

visit methods.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.12 ModuleRewriter Class Reference

111

Parameters

‘ node ‘ The syntax node to process

Definition at line 396 of file verilog_ utils.cpp.

6.12.4 Member Data Documentation

6.12.4.1 cellName_

const std::string ModuleRewriter::cellName_ [private]

Definition at line 75 of file verilog__utils.hpp.

6.12.4.2 depth_

int ModuleRewriter::depth_ [private]

Definition at line 78 of file verilog_ utils.hpp.

6.12.4.3 inputPins_

const std::vector<std::string>& ModuleRewriter::inputPins_

Definition at line 73 of file verilog_ utils.hpp.

6.12.4.4 instance_count__

int ModuleRewriter::instance_count_ [private]

Definition at line 79 of file verilog_ utils.hpp.

[private]

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

112

Class Documentation

6.12.4.5 logger_

std::shared_ptr<spdlog::logger> ModuleRewriter::logger_

Definition at line 68 of file verilog_ utils.hpp.

6.12.4.6 moduleName_

const std::string ModuleRewriter::moduleName_ [privatel]

Definition at line 76 of file verilog_ utils.hpp.

6.12.4.7 outputPins_

const std::vector<std::string>& ModuleRewriter::outputPins_

Definition at line 74 of file verilog__utils.hpp.

6.12.4.8 portinfoMap__

std::map<std::string, std::string> ModuleRewriter::portInfo

Definition at line 77 of file verilog_ utils.hpp.

[private]

Map_ [private]

The documentation for this class was generated from the following files:

= include/verilog_utils.hpp

= src/verilog_ utils.cpp

6.13 PinComparisonResult Struct

#include <LogicComparator.hpp>

Reference

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.13 PinComparisonResult Struct Reference 113

Public Attributes

= std::string pin_name

= std::string ref_expr_raw

= std:string comp_expr_raw

= std::string ref_expr_processed

= std::string comp_expr_processed

= bool comparison_possible = false

= bool are_equivalent = false

= bool ref_compiles = false

= bool comp_compiles = false

= std::optional< Table > ref_truth_table
= std::optional< Table > comp_truth_table

= std::string error__message

6.13.1 Detailed Description

Definition at line 23 of file LogicComparator.hpp.

6.13.2 Member Data Documentation

6.13.2.1 are_equivalent

bool PinComparisonResult::are_equivalent = false

Definition at line 30 of file LogicComparator.hpp.

6.13.2.2 comp_compiles

bool PinComparisonResult::comp_compiles = false

Definition at line 32 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

114

Class Documentation

6.13.2.3 comp_expr_processed

std::string PinComparisonResult::comp_expr_processed

Definition at line 28 of file LogicComparator.hpp.

6.13.2.4 comp_expr_raw

std::string PinComparisonResult::comp_expr_raw

Definition at line 26 of file LogicComparator.hpp.

6.13.2.5 comp_truth_table

std::optional<Table> PinComparisonResult::comp_truth_table

Definition at line 34 of file LogicComparator.hpp.

6.13.2.6 comparison_possible

bool PinComparisonResult::comparison_possible = false

Definition at line 29 of file LogicComparator.hpp.

6.13.2.7 error_message

std::string PinComparisonResult::error_message

Definition at line 35 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.13 PinComparisonResult Struct Reference 115

6.13.2.8 pin_name

std::string PinComparisonResult::pin_name

Definition at line 24 of file LogicComparator.hpp.

6.13.2.9 ref_compiles

bool PinComparisonResult::ref_compiles = false

Definition at line 31 of file LogicComparator.hpp.

6.13.2.10 ref_expr_processed

std::string PinComparisonResult::ref_expr_processed

Definition at line 27 of file LogicComparator.hpp.

6.13.2.11 ref_expr_raw

std::string PinComparisonResult::ref_expr_raw

Definition at line 25 of file LogicComparator.hpp.

6.13.2.12 ref_truth_table

std::optional<Table> PinComparisonResult::ref_truth_table
Definition at line 33 of file LogicComparator.hpp.

The documentation for this struct was generated from the following file:

» include/LogicComparator.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

116 Class Documentation

6.14 Valueslterator Class Reference

#include <Iterators.hpp>

Public Member Functions

= Valueslterator (si2drValuesldT values, si2drErrorT &err)
= ~Valueslterator ()

= void next ()

= bool end ()

Public Attributes

= si2drValuesldT values__
= si2drValueTypeT vtype_
= si2drInt32T int_

= si2drFloat64T float__

» si2drStringT str__

= si2drBooleanT bool__

» si2drExprT * exprp_

= si2drErrorT & err__

6.14.1 Detailed Description

Definition at line 37 of file Iterators.hpp.

6.14.2 Constructor & Destructor Documentation

6.14.2.1 Valueslterator()

ValuesIterator::ValuesIterator (
si2drValuesIdT wvalues,

si2drErrorT & err)

Definition at line 25 of file Iterators.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.14 Valueslterator Class Reference 117

6.14.2.2 ~Valueslterator()

ValuesIterator::~ValuesIterator ()

Definition at line 29 of file Iterators.cpp.

6.14.3 Member Function Documentation

6.14.3.1 end()

bool ValuesIterator::end ()
Definition at line 34 of file Iterators.cpp.

Here is the caller graph for this function:

{ funcubile [bfile-fogic

[ronocheciionie | [oemane |) Goriparne || genemtecetioon | —»| gerrtepinson | o
6.14.3.2 next()
void ValuesIterator::next ()
Definition at line 31 of file Iterators.cpp.
Here is the caller graph for this function:
= GenerateCellion [ommeratetuson | | AGSHREERG]

[spicelibrie | [UbFiie:spice | [UbFileveriiog |

[[veriogtibFie |

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

118 Class Documentation

6.14.4 Member Data Documentation

6.14.4.1 bool_

si2drBooleanT ValuesIterator: :bool_

Definition at line 49 of file Iterators.hpp.

6.14.4.2 err_

si2drErrorT& ValuesIterator::err_

Definition at line 51 of file Iterators.hpp.

6.14.4.3 exprp_

si2drExprT* ValuesIterator::exprp_

Definition at line 50 of file Iterators.hpp.

6.14.4.4 float_

si2drFloat64T ValuesIterator::float_

Definition at line 47 of file Iterators.hpp.

6.14.4.5 int_

si2drInt32T ValuesIterator::int_

Definition at line 46 of file lterators.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference

119

6.14.4.6 str_

si2drStringT ValuesIterator::str_

Definition at line 48 of file Iterators.hpp.

6.14.4.7 values_

si2drValuesIdT ValuesIterator::values_

Definition at line 44 of file Iterators.hpp.

6.14.4.8 vtype_

si2drValueTypeT ValuesIterator::vtype_

Definition at line 45 of file Iterators.hpp.

The documentation for this class was generated from the following files:

» include/lterators.hpp

= src/lterators.cpp

6.15 VerilogVisitor Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for VerilogVisitor:

slang::syntax::SyntaxVisitor
< VerilogVisitor >

VerilogVisitor

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

120 Class Documentation

Collaboration diagram for VerilogVisitor:

slang::syntax::SyntaxVisitor
< VerilogVisitor >

VerilogVisitor

Public Member Functions

= VerilogVisitor (const std::string &targetCell)

= void handle (const slang::syntax::SyntaxNode &node)

= void handle (const slang::syntax::ModuleDeclarationSyntax &module)

= void handle (const slang::syntax::PortDeclarationSyntax &portDecl)

= void handle (const slang::syntax::HierarchylnstantiationSyntax &hierarchylnst)

= void handle (const slang::syntax::SpecifyBlockSyntax &specifyBlock)

Private Attributes

= const std::string & targetCell_
= int depth_
= bool inTargetModule__

6.15.1 Detailed Description

Definition at line 15 of file verilog__utils.hpp.

6.15.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference 121

6.15.2.1 VerilogVisitor()

VerilogVisitor::VerilogVisitor (

const std::string & targetCell) [inline], [explicit]

Definition at line 17 of file verilog_ utils.hpp.

6.15.3 Member Function Documentation

6.15.3.1 handle() ri/s

void VerilogVisitor::handle (

const slang::syntax::HierarchyInstantiationSyntax & hierarchylInst)

Definition at line 78 of file verilog_ utils.cpp.

6.15.3.2 handle() r2/s

void VerilogVisitor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 17 of file verilog_ utils.cpp.

6.15.3.3 handle() r3/5

void VerilogVisitor::handle (

const slang::syntax::PortDeclarationSyntax & portDecl)

Definition at line 46 of file verilog_ utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

122 Class Documentation

6.15.3.4 handle() r4/5

void VerilogVisitor::handle (

const slang::syntax::SpecifyBlockSyntax & specifyBlock)
Definition at line 258 of file verilog_utils.cpp.

Here is the call graph for this function:

_—> VerilogVisitor::handle

6.15.3.5 handle() rs/s

void VerilogVisitor::handle (

const slang::syntax::SyntaxNode & node)
Definition at line 6 of file verilog_ utils.cpp.

Here is the caller graph for this function:

VerilogVisitor::handle _

6.15.4 Member Data Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference 123

6.15.4.1 depth_

int VerilogVisitor::depth_ [private]

Definition at line 28 of file verilog_ utils.hpp.

6.15.4.2 inTargetModule_

bool VerilogVisitor::inTargetModule_ [private]

Definition at line 29 of file verilog_ utils.hpp.

6.15.4.3 targetCell_

const std::string& VerilogVisitor::targetCell_ [private]
Definition at line 27 of file verilog__utils.hpp.

The documentation for this class was generated from the following files:

= include/verilog_utils.hpp

= src/verilog__utils.cpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

124 Class Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 7

File Documentation

7.1 doc/ChangelLog.md File Reference

7.2 include/Iterators.hpp File Reference

#include "si2dr_liberty.h"
#include "LibAttribute.hpp"
#include "LibGroup.hpp"

Include dependency graph for Iterators.hpp:

LibGroup.hpp LibAttribute.hpp

si2dr_liberty.h string

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

126 File Documentation

This graph shows which files directly or indirectly include this file:

| include/json_utils.hpp | | src/lterators.cpp

| include/LibFile.hpp | | src/json_utils.cpp |

| include/LibraryComparator.hpp | | src/LibFile.cpp |

| include/LibFileOperations.hpp | | src/LibraryComparator.cpp |

| src/LibFileOperations.cpp | | src/main.cpp |

Classes

= class Groupslterator
= class Attributeslterator

= class Valueslterator

7.3 lterators.hpp

Go to the documentation of this file.
00001 #ifndef ITERATORS_H

00002 #define ITERATORS_H

00003

00004 #include "si2dr_liberty.h"
00005

00006 #include "LibAttribute.hpp"
00007 #include "LibGroup.hpp"
00008

00009 class GroupsIterator {
00010 public:

00011 GroupsIterator(si2drGroupsIdT groups, si2drErrorT &err);
00012 ~GroupsIterator();

00013 void next();

00014 bool end();

00015 LibGroup get();

00016

00017 private:

00018 si2drGroupsIdT groups_;
00019 si2drGroupIdT group_;
00020 si2drErrorT &err_;

00021 };

00022

00023 class AttributesIterator {
00024 public:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json__utils.hpp File Reference 127

00025 AttributesIterator(si2drAttrsIdT attrs, si2drErrorT &err);
00026 ~AttributesIterator();
00027 void next();

00028 bool end();

00029 LibAttribute get();
00030

00031 private:

00032 si2drAttrsIdT attrs_;
00033 $i2drAttrIdT attr_;
00034 si2drErrorT &err_;
00035 };

00036

00037 class ValuesIterator {
00038 public:

00039 ValuesIterator(si2drValuesIdT values, si2drErrorT &err);
00040 ~ValuesIterator();
00041 void next();

00042 bool end();

00043

00044 si2drValuesIdT values_;
00045 si2drValueTypeT vtype_;
00046 si2drInt32T int_;

00047 si2drFloat64T float_;
00048 si2drStringT str_;
00049 si2drBooleanT bool_;
00050 si2drExprT *exprp_;
00051 si2drErrorT &err_;
00052 };

00053

00054 #endif // ITERATORS_H

7.4 include/json_utils.hpp File Reference

#include <string>

#include "nlohmann/json.hpp"
#include "si2dr_liberty.h"

#include "spdlog/spdlog.h"

#include "Iterators.hpp"

#include "LibGroup.hpp"

Include dependency graph for json_utils.hpp:

include/json_utils.hpp
Iterators.hpp nlohmann/json.hpp spdlog/spdlog.h

LibGroup.hpp | I LibAttribute.hpp |

string si2dr_liberty.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

128 File Documentation

This graph shows which files directly or indirectly include this file:

| include/json_utils.hpp |

tnclude/LibFile.hm src/json_utils.cpp

I include/LibraryComparator.hpp | I src/LibFile.cpp |
I include/LibFileOperations.hpp | I src/LibraryComparator.cpp |
I src/LibFileOperations.cpp | I src/main.cpp |

Typedefs

= using json = nlohmann::json

Functions

= json generateLutJson (LibGroup &lib_lut_group, si2drErrorT &err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

= json generatePowerJson (LibGroup &lib_power_group, si2drErrorT &err)
Converts a Liberty power group into a JSON representation.

» std::pair< std::string, json > generatePinJson (LibGroup &lib_pin_group, si2drErrorT &err)
Generates a JSON representation of a Liberty pin group.

= json generateCellJson (LibGroup &lib_cell_group, si2drErrorT &err)

Generates a JSON representation of a cell from a LibGroup object.

7.4.1 Typedef Documentation

7.4.1.1 json

using json = nlohmann::json

Definition at line 13 of file json__utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json__utils.hpp File Reference 129

7.4.2 Function Documentation

7.4.2.1 generateCellJson()

json generateCellJson (
LibGroup & lib_cell_group,

si2drErrorT & err)
Generates a JSON representation of a cell from a LibGroup object.

This function processes a LibGroup representing a cell and converts it into a JSON object. It extracts
the cell name and processes specific attributes such as area, cell_leakage_power, and cell_footprint. It
also processes pins within the cell by categorizing them based on their direction (input, output, internal,

inout).

Parameters

lib_cell_group | The LibGroup object representing the cell

err Reference to a si2drErrorT object for error handling

Returns
json A JSON object containing the cell's information with the following structure:

= "cell_name”: string - name of the cell

= "area”: float (optional) - cell area if present

= "cell_leakage_power": float (optional) - cell leakage power if present
= "cell_footprint”: string (optional) - cell footprint if present

= "input_pins": array - list of input pins

= "output_pins": array - list of output pins

= "internal_pins": array - list of internal pins

= "inout_pins": array - list of inout pins

Definition at line 271 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

130 File Documentation

Here is the call graph for this function:

D
(& Aitesterstoriget |
X

I
)‘

parseStringToVector

Valueslterator::end

N\ LibAttribute::getValues
Valueslterator::next
‘ LibAttribute::getName

‘ Attributeslterator
unext

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

funcLibFile

monoCheckLibFile

parseLibFile

supercellLibFile LibFile::supercell

| spicelLibFile |—>| LibFile::spice
verilogLibFile

LibFile:verilog

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json__utils.hpp File Reference 131

7.4.2.2 generatelLutJson()

json generateLutJson (
LibGroup & 1lib_lut_group,

si2drErrorT & err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

This function iterates through the attributes of the provided LibGroup object representing a LUT and

converts them into a JSON structure. It specifically handles the following attributes:

= "index_1": Converted to a vector and stored in the JSON
= "index_2": Converted to a vector and stored in the JSON

= "values”: Each value is parsed into a vector and added to an array in the JSON

Any other attributes encountered will trigger a warning message.

Parameters

lib__lut_group | The LibGroup object containing the LUT data to be converted

err Reference to an si2drErrorT object to track any errors during processing

Returns

json A JSON object representing the LUT data with keys for "index_1", "index_2", and "values”

Definition at line 60 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

File Documentation

132

Here is the call graph for this function:

Attributeslterator::end

Valueslterator::end

Attributeslterator::get

LibGroup::getAttrs

LibAttribute::getName

LibAttribute::getValues

Attributeslterator
::next

Valueslterator::next

parseStringToVector
Here is the caller graph for this function:
N [oenerteponerson |
[oponochecktiie | »[imons] Gttens | oo | seretngon | ey,
(et | ——»{ Dorierapice |— | biemeriog |

verilogLibFile

7.4.2.3 generatePinJson()

std::pair< std::string, json > generatePinJson (

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json__utils.hpp File Reference 133

LibGroup & lib_pin_group,

si2drErrorT & err)
Generates a JSON representation of a Liberty pin group.

This function traverses a Liberty pin group, extracts relevant attributes and sub-groups, and converts

them into a JSON object. It also determines the pin's direction.

Processes the following pin attributes:

= direction
= max_transition, capacitance, rise_capacitance, fall_capacitance, max_capacitance (float types)

= function, power_down_function, related_ground_pin, related_power_pin, three_state (string

types)

= clock (boolean type)

Handles the following sub-groups:

= internal_power: Converted using generatePowerJson()

= timing: Converted using generateTimingJson()

Parameters

lib__pin_group | The Liberty pin group to process

err Reference to an error object for tracking Liberty API errors

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

File Documentation

134

Returns
A pair containing the pin direction (string) and the JSON representation of the pin

Definition at line 205 of file json__utils.cpp.

Here is the call graph for this function:

LibGroup::getGroups
Groupslterator::end
Groupslterator::get

‘ Attributeslterator::end

’ LibGroup::getAttrs
parseStringToVector

Valueslterator::end

LibAttribute::getValues

Valueslterator::next

3

Attributeslterator

‘ Attributeslterator::get

N

<

Groupslterator::next LibAttribute::getName

LibAttribute::getBoolean
LibAttribute::getFloat
LibGroup::getName

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json__utils.hpp File Reference

135

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

} generateCelljson

| generatePinjson |

funcLibFile LibFile:logic
monoCheckLibFile } LibFile::mono ‘ } LibFile::parse
parseLibFile
mai
i supercellLibFile ‘ ‘L LibFile::supercell
"spuceubﬁle } [tibFilezspice | l LibFilesverilog |
verilogLibFile

7.4.2.4 generatePowerJson()

json generatePowerJson (
LibGroup & lib_power_group,

si2drErrorT & err)

Converts a Liberty power group into a JSON representation.

This function processes a Liberty power group and converts its attributes and subgroups into a JSON

object. It handles attributes like "when", "related_pin"”, and "related_pg_pin", as well as "rise_power”

and "fall_power" subgroups.

Parameters

lib__power_group | The Liberty power group to convert

err Reference to an si2drErrorT object for error handling

Returns

json A JSON object representing the power group data

The function:

= Extracts string attributes (when, related_pin, related_pg_pin)

= Processes rise_power and fall_power subgroups by converting them to LUT JSON format

= Logs warnings for unknown power subgroup types

Definition at line 152 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

136 File Documentation

Here is the call graph for this function:

Attributeslterator::end |

Attributeslterator::get |

Groupslterator::end

LibAttribute::getValues |
| Valueslterator::next |
/ 'I parseStringToVector |

generatelLutJson

Valueslterator::end |

LibGroup::getAttrs |

AJ' LibAttribute::getName |

Attributeslterator
snext

| Groupslterator::get |

ITbGroup::getGroups |

LibAttribute::getString |

LibGroup::getType

Groupslterator::next |

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

e

7 [monoCheckLibFile e — b - _—
parseLibFile _ . sererterinon | ce e |

. — supercellLibfile LibFile::supercell
\ spiceLibFile Libile:spice »| LibFile:verilog

v
[verilogLibFile

7.5 json__utils.hpp

Go to the documentation of this file.
00001 #ifndef JSON_UTILS_HPP
00002 #define JSON_UTILS_HPP

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.6 include/LibAttribute.hpp File Reference

137

00003

00004 #include <string>

00005

00006 #include "nlohmann/json.hpp"

00007 #include "si2dr_liberty.h"

00008 #include "spdlog/spdlog.h"

00009

00010 #include "Iterators.hpp"

00011 #include "LibGroup.hpp"

00012

00013 using json = nlohmann::json;

00014

00015 json generateLutJson(LibGroup &lib_lut_group, si2drErrorT &err);
00016 json generatePowerJson(LibGroup &lib_power_group, si2drErrorT &err);
00017 std::pair<std::string, json> generatePinJson(LibGroup &lib_pin_group, si2drErrorT &err);
00018 json generateCellJson(LibGroup &lib_cell_group, si2drErrorT &err);
00019

00020 #endif // JSON_UTILS_HPP

7.6 include/LibAttribute.hpp File Reference

#include <string>
#include "si2dr_liberty.h"
Include dependency graph for LibAttribute.hpp:

string si2dr_liberty.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

138 File Documentation

This graph shows which files directly or indirectly include this file:

I include/Iterators.hpp | I src/LibAtrribute.cpp |

I include/json_utils.hpp | I src/lterators.cpp |

l include/LibFile.hpp | l src/json_utils.cpp |

l include/LibraryComparator.hpp | l src/LibFile.cpp |

I include/LibFileOperations.hpp | I src/LibraryComparator.cpp |

I src/LibFileOperations.cpp | I src/main.cpp |

Classes

= class LibAttribute

7.7 LibAttribute.hpp

Go to the documentation of this file.
00001 #ifndef LIB_ATTRIBUTE_H
00002 #define LIB_ATTRIBUTE_H
00003

00004 #include <string>

00005

00006 #include "si2dr_liberty.h"
00007

00008 class LibAttribute {

00009 public:

00010 LibAttribute(si2drAttrIdT attr, si2drErrorT &err);
00011 ~LibAttribute();

00012 std::string getName();
00013 bool isComplex();

00014 si2drValuesIdT getValues();
00015 long int getInt();

00016 double getFloat();

00017 std::string getString();
00018 bool getBoolean();

00019

00020 private:

00021 si2drAttrIdT attr_;

00022 si2drErrorT &err_;

00023 };

00024

00025 #endif // LIB_ATTRIBUTE_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.8 include/LibFile.hpp File Reference 139

7.8 include/LibFile.hpp File Reference

#include <chrono>

#include <filesystem>

#include <fstream>

#include <string>

#include <unordered_set>

#include "nlohmann/json.hpp"

#include "si2dr_liberty.h"

#include "spdlog/sinks/basic_file_sink.h"
#include "spdlog/sinks/stdout_color_sinks.h"
#include "spdlog/spdlog.h"

#include "Iterators.hpp"

#include "json_utils.hpp"

#include "verilog_utils.hpp"

#include "version.h"

Include dependency graph for LibFile.hpp:

This graph shows which files directly or indirectly include this file:

LFmNdﬂUEE@hEEJ

| include/LibraryComparator.hpp | | src/LibFile.cpp
| include/LibFileOperations.hpp | | src/LibraryComparator.cpp |
| src/LibFileOperations.cpp | | src/main.cpp |

Classes

= class LibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

140

File Documentation

Typedefs

= using json = nlohmann::json

7.8.1 Typedef Documentation

7.8.1.1 json

using json = nlohmann::json

Definition at line 21 of file LibFile.hpp.

7.9 LibFile.hpp

Go to the documentation of this file.
00001 #ifndef LIB_FILE_H

00002 #define LIB_FILE_H

00003

00004 #include <chrono>

00005 #include <filesystem>

00006 #include <fstream>

00007 #include <string>

00008 #include <unordered_set>

00009

00010 #include "nlohmann/json.hpp"

00011 #include "si2dr_liberty.h"

00012 #include "spdlog/sinks/basic_file_sink.h"
00013 #include "spdlog/sinks/stdout_color_sinks.h"
00014 #include "spdlog/spdlog.h"

00015

00016 #include "Iterators.hpp"

00017 #include "json_utils.hpp"

00018 #include "verilog_utils.hpp"

00019 #include "version.h"

00020

00021 using json = nlohmann::json;

00022

00023 class LibFile {

00024 public:

00025 LibFile(const std::string &filepath, const std::string &loggername);
00026 ~LibFile();

00027 std::shared_ptr<spdlog::logger> logger_;

00028 std::filesystem::path filepath_; // full path to the file

00029 std::string basename_; // file name without extension

00030 std::string filename_; // full file name with extension

00031 std::string libname_ = ""; // library name obtained through parsing
00032 std::string jsonname_ = ""; // json file name to store parsed data
00033 std::string loggername_ = ""; // log file name

00034 json lib_json_ = json::object();
00035 void writeJsonToFile();

00036 void parse();

00037 void modify();

00038 void mono(const bool is_slew);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference

141

00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

7.10

void supercell(const int chain_length, const std::vector<std::string> &cell_names);

void verilog(const int chain_length, const std::vector<std::string> &cell_names);

void spice(const int chain_length, const std::vector<std::string> &cell_names,
const std::string &verilog_lib_file, const std::string &spice_lib_file);

std::map<std::string, std::string> logic(const std::string &cell_name);

private:
si2drErrorT err_;
int process_ = 0;
float voltage_ = 0.0;
int temperature_ = 0;
void read();
bool checkTimingArcMonotonicity(const json &cell, const json &pin, const json &arc,
const std::string &type, bool is_slew);
// --- Private Helper Methods ---—

// Helper function to split a string by whitespace
std::vector<std::string> splitString(const std::string &s);

// Function to generate RC lines based on instance index and stage
void generateRCLines(std::ofstream &outFile, const std::string &netName, int instancelIndex,

bool isFinalStage);

// Function to modify the SPICE netlist generated by v2lvs
bool modifySpiceNetlist(const std::string &v2lvsSpiceFile, // Input is the v2lvs output
const std::string &finalSpiceFile, // Output is the final file
const std::string &targetGlobalLine);
};

#endif // LIB_FILE_H

#include <filesystem>

#include <iostream>

#include <thread>

#include "si2dr_liberty.h"

#include "spdlog/sinks/basic_file_sink.h"

#include "spdlog/sinks/stdout_color_sinks.h"

#include "spdlog/spdlog.h"
#include "LibFile.hpp"

#include "LibraryComparator.hpp"

#include "LogicComparator.hpp"

#include "LogicExtractor.hpp"

Include dependency graph for LibFileOperations.hpp:

include/LibFileOperations.hpp File Reference

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

142

File Documentation

This graph shows which files directly or indirectly include this file:

include/LibFileOperations.hpp

src/LibFileOperations.cpp src/main.cpp

Functions

void printInfo ()

Sets up and configures the global logger and prints application information.
void parseLibFile (const std::string &library_path, const std::string log_file_name)

Parses a library file and generates corresponding output.
void monoCheckLibFile (const std::string &library_path, const std::string log_file_name, bool is—
_slew)

Performs monotonicity check on a library file.
void supercellLibFile (const std::string &library_path, const std::string &log_ file_name, int chain—
_length, const std::vector< std::string > &cell_names)

Creates supercell map structures from a Liberty library file.
void verilogLibFile (const std::string &library_path, const std::string &log_file_name, int chain—
_length, const std::vector< std::string > &cell_names)

Generates Verilog files from a library file for specified cells.
void spiceLibFile (const std::string &library_path, const std::string &log_file_name, int chain—
_length, const std::vector< std::string > &cell_names, const std::string &verilog_lib_file, const
std::string &spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.
void compareLibFiles (const std::string &ref_lib, const std::string &comp_lib, const double reltol,
const double abstol, std::string &report_file_name)

Compares two library files and generates a detailed comparison report.
void funcLibFile (const std::string &ref_file, const std::string &comp_file, const std::vector< std«
::string > &cell_names, std::string &report_file_name)

Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

7.10.1 Function Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 143

7.10.1.1 compareLibFiles()

void compareLibFiles (
const std::string & ref_lib,
const std::string & comp_l1b,
const double reltol,
const double abstol,

std::string & report_file_name)
Compares two library files and generates a detailed comparison report.

This function compares a reference library file with another library file, performing validation checks
based on specified tolerance parameters. The comparison results are written to a report file in markdown

or text format.

Parameters
ref_lib Path to the reference library file to use as the baseline
comp__lib Path to the library file to compare against the reference
reltol Relative tolerance for numerical comparisons (must be >= 0.0)
abstol Absolute tolerance for numerical comparisons

report_file_name | [in,out] Name of the file to write the comparison report to. If empty, defaults to

[comp_lib_basename].cmp.md. If provided but doesn't end with .txt or .md,

.md will be appended.

Note
The function will log an error and return without comparing if reltol is invalid.
Log files will be created with the naming pattern [library_basename].cmp.log
The function uses the LibraryComparator class to perform the actual comparison.

Definition at line 249 of file LibFileOperations.cpp.

Here is the call graph for this function:

[Libraryc [Libraryc : [LibraryComparator:: ["Libraryc [Libraryc :
compareLibFiles | generateReport ‘ | comparecell | comparepin | compareTimingarc | compareLut

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

144 File Documentation

Here is the caller graph for this function:

main compareLibFiles

7.10.1.2 funcLibFile()

void funcLibFile (
const std::string & ref_file,
const std::string & comp_file,
const std::vector< std::string > & cell_names,

std::string & report_file_name)
Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

This function compares the logic functions of specified cells in two files, which can be either in Liberty
(.lib) or Verilog (.v) format. It extracts the logic functions for each cell from both files, compares them,

and generates a report summarizing the comparison results.

Parameters
ref_file The path to the reference file (Liberty or Verilog).
comp_file The path to the comparison file (Liberty or Verilog).
cell_names A vector of cell names to be checked for functional equivalence.

report_file_name | A string to store the name of the report file. If empty, a default name is

generated. If the provided name does not end with ".txt” or ".md", ".md" is

appended.

The function first checks the file extensions to determine the file format. It then extracts the logic
functions for each specified cell from both files. The logic functions are then compared, and a report
is generated, which includes the comparison results for each cell. The report is written to the specified

report file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 145

Note

If no cell names are provided, the function logs an error and returns.

= If the reference or comparison file format is not supported (i.e., not .lib or .v), the function

logs an error and returns.

= The report file is cleared before writing the comparison results.

= The function uses spdlog for logging information, warnings, and errors.

= The function utilizes the LogicComparator class to perform the logic comparison and generate
the report.

= Memory allocated for LibFile objects is managed using raw pointers and must be manually

deallocated to prevent memory leaks.

Definition at line 308 of file LibFileOperations.cpp.

Here is the call graph for this function:

[y | (]
Groupsiterator::get
[GbGroup-getGrouss
[oatmiagion [ettt |
generate Celljson } generatePinjson LibAttribute::getValues

Value:

n

[bwmseresing | \|\ [UoGowenin |

Libmmrmaergarion] "\ | trerowm-aetee |
Gt |
gl UibAttribute-getName
b
ok

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

146 File Documentation

Here is the caller graph for this function:

main funcLibFile

7.10.1.3 monoCheckLibFile()

void monoCheckLibFile (
const std::string & library_path,
const std::string log_file_name,

bool is_slew)
Performs monotonicity check on a library file.

This function validates the monotonicity of timing data in a library file. It creates a log file to record the

results of the check and handles any exceptions that occur during the process.

Parameters

library_path Path to the library file to check

log_file_name | Name of the log file to create (optional). If empty, a default name will be

generated from the library file name

is_slew Flag indicating whether to check input slew monotonicity (true) or output load

monotonicity (false)

Exceptions

‘ The ‘ function catches and logs any exceptions but does not rethrow them

Definition at line 81 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 147

Here is the call graph for this function:

__— ‘\‘

UbAttribute-getFloat | !

‘ . .] |
) . | | [Aurbutestertor-end
: —
‘ /
/

~

\“ - Valuesterator::end

/ generatelitson |
‘ i \ N
It -

O\
AN \\

‘ N——— | [UbAttribute:getName
\

| /

7 -
/[Atributesiterator
next

If
| Commtecetien

| N

UbFilezmono

\

LibAttribute:getint
LibFile:read

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

148 File Documentation

7.10.1.4 parseLibFile()

void parseLibFile (
const std::string & library_path,

const std::string log_file_name)
Parses a library file and generates corresponding output.

This function processes the given library file, parsing its contents and generating a JSON output. It also

logs the parsing process to a specified log file or creates a default log file if none is provided.

Parameters

library__path Path to the library file that needs to be parsed

log_file_name | Optional name for the log file. If empty, a default name is generated based on the

library filename with ".parse.log” extension

Exceptions

‘ The ‘ function catches and logs any exceptions but doesn't propagate them

Definition at line 49 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference

149

Here is the call graph for this function:

N k

| [[Attributesiterator:end

4

/)
/[parsestringTovector
/) =
Valueslterator:end
T LibAttribute::getvalues

—

\
\\ [Valuestterator::next
\

T GoFileswritejsonTofile | \

\. R

\ [LibAttribute:igetint
LibFile:read

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

150 File Documentation

7.10.1.5 printinfo()

void printInfo ()
Sets up and configures the global logger and prints application information.

This function performs the following operations:

1. Creates a console sink for logging with level set to INFO

2. Creates a file sink for logging with level set to TRACE, saving to [APP_NAME].log
3. Configures a logger with both sinks and sets it as the default logger

4. Outputs basic application information:

= Version and build timestamp
= Author information

= Log file location

Note

Uses spdlog library for logging functionality

Depends on APP_NAME, APP_VERSION, BUILD_TIMESTAMP, APP_AUTHOR, and APP«
__CONTACT macros

Definition at line 18 of file LibFileOperations.cpp.

Here is the caller graph for this function:

main printinfo

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference

151

7.10.1.6 spiceLibFile()

void spiceLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names,

const std::string & wverilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

This function takes a library file path, a log file name, a chain length, a vector of cell names, a Verilog

library file path, and a SPICE library file path as input. It initializes a LibFile object, validates the chain

length, and then calls the spice method of the LibFile object to generate the SPICE library file. It logs

the start and end of the SPICE generation process, as well as any errors that occur.

Parameters

library_path

The path to the input library file.

log_file_name

The name of the log file. If empty, a default log file name is generated based on

the library file name.

chain__length

The chain length to use during SPICE generation. Must be >= 1.

cell_names

A vector of cell names to include in the SPICE generation.

verilog_lib_file

The path to the Verilog library file.

spice_lib_file

The path to the output SPICE library file.

Definition at line 202 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

File Documentation

152

Here is the call graph for this function:

K [Comstarorand
o
,/
Yy / g LibGroup: getAttrs

Y

| \
\ N
|

|

Liﬁ

o hmmm

|
|
%
UbAttibute: getsting e etoret

[Ubriespsiing | I
[modtySpcaNeiie | —»{ UbFi-penerateRCines | |
[Dofiesporse |

[ey
*{Gorievaros | [Gortessupeee |
* T Ubkie:witejsonTofile. \

v

Here is the caller graph for this function:

7.10.1.7 supercellLibFile()

void supercellLibFile (

const std::string & library_path,

const std::string & log_file_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 153

int chain_length,

const std::vector< std::string > & cell_names)
Creates supercell map structures from a Liberty library file.

This function reads a Liberty file, creates supercell structures based on the specified chain length and

cell names, and logs the process to a file.

Parameters

library__path Path to the Liberty file to process

log_file_name | Name of the log file (if empty, defaults to "[library_name].supercell.log™)

chain_length | The length of chains to create (must be >= 1)

cell_names Vector of cell names to process for supercell generation

Exceptions

‘ May ‘ pass through exceptions from the LibFile::supercell method

Note

The function validates the chain length and logs all activities including errors that might occur

during processing

Definition at line 116 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

154 File Documentation

Here is the call graph for this function:

/
LibAttribute::getValues

L
[generatepowerison
— b

oy R e |

Ny

‘Attributesiterator
“next

Attributesiterator:iget

, [brilesparse |-
LibFile:supercell |
UbFile:writeJsonTorile

. R
[LibAttrbute:getint

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference

155

7.10.1.8 verilogLibFile()

void verilogLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names)

Generates Verilog files from a library file for specified cells.

This function processes a library file and generates Verilog representation for the specified cell names

with a given chain length. The operation results are logged to a specified or default log file.

Parameters

library_path

Path to the library file to process

log_file_name

Name for the log file (if empty, a default name will be generated)

chain_length

Number of cells to chain together, must be >=1

cell_names

Vector of cell names to generate Verilog for

Exceptions

‘ Catches ‘ any exceptions from the verilog generation process and logs them

Definition at line 157 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

156 File Documentation

Here is the call graph for this function:

\
Ubatributesgetrioat |) [Groupsteratorse a
) i Attributesiteratorsend
/ \/ \
Groupsiterator:get \
A \/

\
I/ LibGroup::getType
[:I4
|
N, T
/. 2)
) z [Feiseiormiorni |

[senerssroverson |/ generatetunson |
[oereoetaives
[Vluesteratarnext |

\

\ //
X
.
Aetibutesherator
noxt
o[UbAtribute: getstring A

‘
1
x
|/

[FERRE], | i verion || iiesuperet |
*[Gorieaaroris
\«

|
|
| LibAttribute:getName
4

LibAttribute:getint
Ubfilezread

Here is the caller graph for this function:

7.11 LibFileOperations.hpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.12 include/LibGroup.hpp File Reference

157

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034

#ifndef LIBFILEOPERATIONS_H
#define LIBFILEOPERATIONS_H

#include <filesystem>

#include <iostream>

#include <thread>

#include "si2dr_liberty.h"

#include "spdlog/sinks/basic_file_sink.h"

#include "spdlog/sinks/stdout_color_sinks.h"

#include "spdlog/spdlog.h"

#include "LibFile.hpp"
#include "LibraryComparator.hpp"

#include "LogicComparator.hpp"

#include "LogicExtractor.hpp"

void

void

void

void

void

void

void

void

printInfo();
parseLibFile(const std::string &library_path, const std::string log_file_name);
monoCheckLibFile(const std::string &library_path, const std::string log_file_name,
bool is_slew);
supercellLibFile(const std::string &library_path, const std::string &log_file_name,
int chain_length, const std::vector<std::string> &cell_names) ;
verilogLibFile(const std::string &library_path, const std::string &log_file_name,
int chain_length, const std::vector<std::string> &cell_names);
spiceLibFile(const std::string &library_path, const std::string &log_file_name,
int chain_length, const std::vector<std::string> &cell_names,
const std::string &verilog_lib_file, const std::string &spice_lib_file);
compareLibFiles(const std::string &ref_lib, const std::string &comp_lib, const double reltol,
const double abstol, std::string &report_file_name);
funcLibFile(const std::string &ref_file, const std::string &comp_file,

const std::vector<std::string> &cell_names, std::string &report_file_name);

#endif // LIBFILEOPERATIONS_H

7.12

include/LibGroup.hpp File Reference

#include <string>
#include "si2dr_liberty.h"

Include dependency graph for LibGroup.hpp:

string si2dr_liberty.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

158 File Documentation

This graph shows which files directly or indirectly include this file:

! A !
include/Iterators.hpp src/LibGroup.cpp
A |

I src/lterators.cpp | I include/json_utils.hpp |
. 4

include/LibFile.hpp src/json_utils.cpp
: 4 A W

I include/LibraryComparator.hpp | I src/LibFile.cpp |
v A =
I include/LibFileOperations.hpp | I src/LibraryComparator.cpp |
v A 3
I src/LibFileOperations.cpp | I src/main.cpp |

Classes

= class LibGroup

7.13 LibGroup.hpp

Go to the documentation of this file.
00001 #ifndef LIB_GROUP_H

00002 #define LIB_GROUP_H

00003

00004 #include <string>

00005

00006 #include "si2dr_liberty.h"
00007

00008 class LibGroup {

00009 public:

00010 LibGroup(si2drGroupIdT group, si2drErrorT &err);
00011 ~LibGroup();

00012 std::string getName();
00013 std::string getType();
00014 si2drAttrsIdT getAttrs();
00015 si2drGroupsIdT getGroups();
00016

00017 private:

00018 si2drGroupIdT group_;

00019 si2drErrorT &err_;

00020 };

00021

00022 #endif // LIB_GROUP_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.14 include/LibraryComparator.hpp File Reference 159

7.14 include/LibraryComparator.hpp File Reference

#include <chrono>

#include <filesystem>

#include <fstream>

#include "nlohmann/json.hpp"

#include "spdlog/spdlog.h"

#include "tabulate/table.hpp"

#include <tabulate/markdown_exporter.hpp>
#include "LibFile.hpp"

#include "version.h"

Include dependency graph for LibraryComparator.hpp:

vvvvvv m | unordered set | | unordered_mep spdlogispdiogh

This graph shows which files directly or indirectly include this file:

include/LibraryComparator.hpp

| include/LibFileOperations.hpp | | src/LibraryComparator.cpp

| src/LibFileOperations.cpp | | src/main.cpp |

Classes

= class LibraryComparator

Typedefs

= using json = nlohmann::json

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

160 File Documentation

7.14.1 Typedef Documentation

7.14.1.1 json

using json = nlohmann::json

Definition at line 16 of file LibraryComparator.hpp.

7.15 LibraryComparator.hpp

Go to the documentation of this file.
00001 #ifndef COMPARE_HPP

00002 #define COMPARE_HPP

00003

00004 #include <chrono>

00005 #include <filesystem>

00006 #include <fstream>

00007

00008 #include "nlohmann/json.hpp"

00009 #include "spdlog/spdlog.h"

00010 #include "tabulate/table.hpp"

00011 #include <tabulate/markdown_exporter.hpp>
00012

00013 #include "LibFile.hpp"

00014 #include "version.h"

00015

00016 using json = nlohmann::json;

00017 using namespace tabulate;

00018

00019 class LibraryComparator {

00020 public:

00021 LibraryComparator(LibFile &ref_libfile, LibFile &comp_libfile, double reltol, double abstol);
00022 std::filesystem::path ref_lib_path_;
00023 std::filesystem::path comp_lib_path_;
00024 void generateReport(const std::string &output_file);
00025

00026 private:

00027 json ref_json_;

00028 json comp_json_;

00029 double reltol_;

00030 double abstol_;

00031

00032 void compareCell(const std::string &cell_name, const json &ref_cell, const json &comp_cell,
00033 Table &table);

00034 void comparePin(const std::string &cell_name, const std::string &pin_name, const json &ref_pin,
00035 const json &comp_pin, Table &table);

00036 void compareTimingArc(const std::string &cell_name, const std::string &pin_name,

00037 const std::string &timing_type, const json &ref_timing_arc,

00038 const json &comp_timing arc, Table &table);

00039 void compareLut(const std::string &cell_name, const std::string &pin_name,

00040 const std::string &timing_type, const std::string &related_pin,

00041 const std::string &arc_name, const json &ref_lut, const json &comp_lut,
00042 Table &table);

00043 // void configureTableFormat(Table &table);

00044 };

00045

00046 #endif // COMPARE_HPP

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.16 include/LogicComparator.hpp File Reference

161

7.16 include/LogicComparator.hpp File Reference

#include <algorithm>
#include <chrono>

#include <cmath>

#include <filesystem>
#include <iomanip>

#include <optional>

#include <regex>

#include <variant>

#include "exprtk.hpp"
#include "tabulate/markdown_exporter.hpp"
#include "tabulate/table.hpp"
#include <spdlog/spdlog.h>
#include "version.h"

Include dependency graph for LogicComparator.hpp:

algorithm chrono cmath flesystem fomanip | | optional regex | [variant exprtk.hpp _exporterhpp.

This graph shows which files directly or indirectly include this file:

include/LogicComparator.hpp

| include/LibFileOperations.hpp | | src/LogicComparator.cpp

| src/LibFileOperations.cpp | | src/main.cpp |

Classes

= struct PinComparisonResult

= class LogicComparator

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

162 File Documentation

7.17 LogicComparator.hpp

Go to the documentation of this file.

00001 #ifndef LOGIC_COMPARATOR_HPP

00002 #define LOGIC_COMPARATOR_HPP

00003

00004 #include <algorithm>

00005 #include <chrono>

00006 #include <cmath>

00007 #include <filesystem>

00008 #include <iomanip>

00009 #include <optional> // To store tables optionally

00010 #include <regex> // For regular expressions

00011 #include <variant>

00012

00013 #include "exprtk.hpp"

00014 #include "tabulate/markdown_exporter.hpp"

00015 #include "tabulate/table.hpp"

00016 #include <spdlog/spdlog.h>

00017

00018 #include "version.h"

00019

00020 using namespace tabulate;

00021

00022 // Structure to hold results for a single pin comparison
00023 struct PinComparisonResult {

00024 std::string pin_name;

00025 std:
00026 std:
00027 std:

:string ref_expr_raw;

:string comp_expr_raw;

:string ref_expr_processed;

00028 std::string comp_expr_processed;

00029 bool comparison_possible = false; // Was comparison attempted?

00030 bool are_equivalent = false;

00031 bool ref_compiles = false;

00032 bool comp_compiles = false;

00033 std::optional<Table> ref_truth_table; // Store tables only if needed/successful
00034 std::optional<Table> comp_truth_table;

00035 std::string error_message; // Store any error during comparison

00036 };

00037

00038 class LogicComparator {

00039 public:

00040 LogicComparator(const std::map<std::string, std::string> &ref_outpin_map,

00041 const std::map<std::string, std::string> &comp_outpin_map,
00042 const std::string &cell_name);
00043

00044 // Example code from exprtk documentation

00045 void logic();

00046

00047 // Preprocessing function

00048 std::string preprocessExpression(const std::string &input_expr);
00049

00050 // Helper to extract unique sorted variables from TWO expressions

00051 bool extractVariables(const std::string &exprl, const std::string &expr2,

00052 std::vector<std::string> &sorted_vars);

00053

00064 void compareSingleExpressionPair(const std::string &ref_expression_processed,

00065 const std::string &comp_expression_processed,

00066 const std::vector<std::string> &sorted_vars,

00067 PinComparisonResult &result); // Pass result struct
00068

00073 void compareCellLogic();

00074

00080 void generateReport(const std::string &output_file);
00081

00082 private:

00083 std: :map<std::string, std::string> ref_outpin_map_;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.18 include/LogicExtractor.hpp File Reference

163

00084 std::map<std::string, std::string> comp_outpin_map_;

00085 std::string cell_name_;

00086 std::map<std::string, PinComparisonResult> all_pin_results_;
00087 };

00088

00089 #endif // LOGIC_COMPARATOR_HPP

7.18 include/LogicExtractor.hpp File Reference

#include "verilog_utils.hpp"
Include dependency graph for LogicExtractor.hpp:

include/LogicExtractor.hpp

[vetog uie oo

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h

This graph shows which files directly or indirectly include this file:

include/LogicExtractor.hpp |

spdlog/spdlog.h

| include/LibFileOperations.hpp | | src/LogicExtractor.cpp

| src/LibFileOperations.cpp | | src/main.cpp |

Classes

= struct Gatelnfo

» class LogicExtractor

Functions

= void extractAndPrintNetlistInfo (const std::string &verilog_file, const std::string &cell)

Extracts and prints netlist information from a Verilog file for a specified cell.

= std::map< std::string, std::string > extractLogicFromVerilog (const std::string &verilog_file, const

std::string &cell)

Extracts logic expressions from a Verilog file for a specified cell.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

164 File Documentation

7.18.1 Function Documentation

7.18.1.1 extractAndPrintNetlistinfo()

void extractAndPrintNetlistInfo (
const std::string & wverilog_file,

const std::string & cell)
Extracts and prints netlist information from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, extracts information about the primary inputs,
primary outputs, internal wires, and gate drivers within a specified cell (module). It then prints a summary

of the extracted information to the console using spdlog.

Parameters

verilog_file | The path to the Verilog file to be parsed.

cell The name of the cell (module) for which to extract netlist information.

Exceptions

std::exception | If any error occurs during Verilog parsing or info extraction.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.18 include/LogicExtractor.hpp File Reference 165

Note

The function uses the slang library for Verilog parsing and a custom LogicExtractor class to extract

the desired information. Error messages are logged using spdlog.

Definition at line 676 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::getExtracted
Gates

LogicExtractor::getinternal
Wires

extractAndPrintNetlistInfo |

LogicExtractor::getPrimary
Inputs

LogicExtractor::getPrimary
Outputs

7.18.1.2 extractLogicFromVerilog()

std::map< std::string, std::string > extractLogicFromVerilog (
const std::string & wverilog_file,

const std::string & cell)
Extracts logic expressions from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, identifies the specified cell, and extracts the
logic expressions for its outputs. It returns a map where the keys are output signal names and the values

are their corresponding logic expressions as strings.

Parameters

verilog_file | The path to the Verilog file to parse.

cell The name of the cell (module) for which to extract logic expressions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

166

File Documentation

Returns

A map of output signal names to their logic expressions. Returns an empty map if parsing fails,

the cell is not found, or no logic expressions can be derived.

Note

The function uses the slang library for Verilog parsing. Ensure that slang is properly installed and

configured before using this function.

The logic extraction process involves traversing the syntax tree of the Verilog code and identifying

relevant assignments and expressions within the specified cell.

Error messages and warnings are logged using the spdlog library.

Definition at line 755 of file LogicExtractor.cpp.

Here is the call graph for this function:

¥ ‘ LogicExtractor::getLogic
extractLogicFromVerilog ‘ Expressions

‘ LogicExtractor::_deriveLogic [

Recursive 1 LogicExtractor::formatExpression

Here is the caller graph for this function:

funcLibFile

7.19 LogicExtractor.hpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012

// include/LogicExtractor.hpp

#ifndef LOGIC_EXTRACTOR_HPP
#define LOGIC_EXTRACTOR_HPP

#include "verilog_utils.hpp"

// Structure to represent a gate instance's information

struct Gatelnfo {

i extractLogicFromVerilog

slang: :parsing::TokenKind kind; // Store the TokenKind for reliable checks

std::string gateTypeName; // Store the string name like "and", "xor"

std::vector<std::string> inputSignals;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.19 LogicExtractor.hpp 167

00013
00014 };
00015

std::string outputSignal;

00016 // Visitor class to extract netlist information and derive logic expressions

00017 class LogicExtractor : public slang::syntax::SyntaxVisitor<LogicExtractor> {
00018 public:

00019 // Constructor takes the target cell name

00020 explicit LogicExtractor(const std::string &targetCell)

00021 : targetCell_(targetCell), inTargetModule_(false), parsingComplete_(false) {}

00022

00023 // --- Visitor Handlers ---

00024 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

00025 void handle(

00026 const slang::syntax::PortDeclarationSyntax &portDecl); // Handles direction/type declaration
00027 void

00028 handle(const slang::syntax::NonAnsiPortListSyntax &portList); // Handles port names list in header
00029 void

00030 handle(const slang::syntax::NetDeclarationSyntax &netDecl); // To find explicitly declared wires
00031 void handle(const slang::syntax::PrimitiveInstantiationSyntax

00032 &primitiveInst); // Handles gate instantiation

00033 // Potentially handle ContinuousAssignSyntax if needed later:

00034 // void handle(const slang::syntax::ContinuousAssignSyntax& assign);

00035

00036 // --- Access Extracted Info (for Step 1 debugging) -—-—

00037 const std::unordered_map<std::string, GateInfo> &getExtractedGates()const {

00038 return gateOutputDrivers_;

00039 }

00040 const std::unordered_set<std::string> &getPrimaryInputs()const { return primaryInputs_; }
00041 const std::unordered_set<std::string> &getPrimaryOutputs()const { return primaryOutputs_; }
00042 const std::unordered_set<std::string> &getInternalWires()const { return internalWires_; }
00043

00044 // --- Logic Derivation (Commented out for Step 1) ---

00045 std::map<std::string, std::string> getLogicExpressions();

00046

00047 private:

00048 // --- Internal State ---

00049 const std::string &targetCell_;

00050 bool inTargetModule_;

00051 bool parsingComplete_; // Flag to indicate AST traversal is done

00052

00053 // Netlist Information

00054 std::unordered_set<std::string> primaryInputs_;

00055 std::unordered_set<std::string> primaryOutputs_;

00056 std: :unordered_set<std::string> internalWires_; // Includes gate outputs

00057

00058 // Temporary map to store directions found in PortDeclarationSyntax

00059 // Key: port name, Value: direction ("input", "output", "inout", "unknown")

00060 std: :unordered_map<std::string, std::string> portDirections_;

00061

00062 // Map: output signal name -> GatelInfo driving it

00063 std::unordered_map<std::string, GateInfo> gateOutputDrivers_;

00064

00065 // Map: signal name -> Logic expression string (Memoization Cache) - (Used in Step 2)
00066 std::unordered_map<std::string, std::string> logicCache_;

00067

00068 // --- Helper Methods ---

00069 // Recursive function to derive logic for a given signal (Used in Step 2)

00070 std::string deriveLogicRecursive(const std::string &signalName);

00071 // Helper to format expressions based on gate type (Used in Step 2)

00072 std::string formatExpression(const GateInfo &gatelnfo,

00073 const std::vector<std::string> &inputExprs);

00074 };

00075

00076 // --- Function Declaration ---

00077 // For Step 1, this function will just run the visitor and maybe print summary

00078 void extractAndPrintNetlistInfo(const std::string &verilog_file, const std::string &cell);

00079

00080 // Function to be implemented in Step 2

00081 std::map<std::string, std::string> extractLogicFromVerilog(const std::string &verilog_file,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

168 File Documentation

00082 const std::string &cell);
00083
00084 #endif // LOGIC_EXTRACTOR_HPP

7.20 include/verilog_utils.hpp File Reference

#include <fstream>

#include <unordered_map>

#include <unordered_set>

#include "slang/syntax/SyntaxPrinter.h"
#include "slang/syntax/SyntaxVisitor.h"
#include "spdlog/spdlog.h"

Include dependency graph for verilog_ utils.hpp:

include/verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

This graph shows which files directly or indirectly include this file:

include/verilog_utils.hpp

’iclude/LibFiIe.hpp] l include/LogicExtractor.hpp] l src/verilog_utils.cpp

l include/LibraryComparator.hpp] l src/LibFile.cpp] src/LogicExtractor.cpp

I src/LibraryComparator.cpp] I include/LibFileOperations.hpp]

l src/LibFileOperations.cpp] l src/main.cpp]

Classes

= class VerilogVisitor
= class CellExtractor
= class CellPrinter

= class ModuleRewriter

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.21 verilog__utils.hpp

169

Functions

= void getAST (const std::string &verilog_file, const std::string &cell)

7.20.1 Function Documentation

7.20.1.1 getAST()

void getAST (
const std::string & wverilog_file,

const std::string & cell)
Definition at line 544 of file verilog_ utils.cpp.

Here is the call graph for this function:

getAST CellExtractor::foundTargetCell

7.21 verilog__utils.hpp

Go to the documentation of this file.

00001 // verilog_utils.hpp

00002

00003 #ifndef VERILOG_UTILS_H

00004 #define VERILOG_UTILS_H

00005

00006 #include <fstream>

00007 #include <unordered_map>

00008 #include <unordered_set>

00009

00010 #include "slang/syntax/SyntaxPrinter.h"

00011 #include "slang/syntax/SyntaxVisitor.h"

00012 #include "spdlog/spdlog.h" // Include spdlog

00013

00014 // Creating custom visitor class

00015 class VerilogVisitor : public slang::syntax::SyntaxVisitor<VerilogVisitor> {
00016 public:

00017 explicit VerilogVisitor(const std::string &targetCell)

00018 : targetCell_(targetCell), depth_(0), inTargetModule_(false) {}
00019 void handle(const slang::syntax::SyntaxNode &node);

00020 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

170

File Documentation

00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084

void handle(const slang::syntax::PortDeclarationSyntax &portDecl);
void handle(const slang::syntax::HierarchyInstantiationSyntax &hierarchyInst);
// void handle(const slang::syntax::PrimitiveInstantiationSyntax &primitivelnst);
void handle(const slang::syntax::SpecifyBlockSyntax &specifyBlock);
private:
const std::string &targetCell_;
int depth_;
bool inTargetModule_;
};
// Creating a Rewriter to extract a specific cell

class CellExtractor : public slang::syntax::SyntaxRewriter<CellExtractor> {

public:
explicit CellExtractor(const std::string &targetCell)
: targetCell_(targetCell), foundTarget_(false) {}
void handle(const slang::syntax::ModuleDeclarationSyntax &module);
bool foundTargetCell() const;
private:
const std::string &targetCell_;
bool foundTarget_;
};
// Print specific cell when visiting SyntaxTree

class CellPrinter : public slang::syntax::SyntaxVisitor<CellPrinter> {

public:
explicit CellPrinter(const std::string &targetCell, std::ostream &out)
: targetCell_(targetCell), out_(out), foundTarget_(false) {}
void handle(const slang::syntax::ModuleDeclarationSyntax &module);
private:
const std::string &targetCell_;
std::ostream &out_;
bool foundTarget_;
};
// Comprehensive module rewriter for adding ports, instances, and connections

class ModuleRewriter : public slang::syntax::SyntaxRewriter<ModuleRewriter> {
public:
explicit ModuleRewriter(const std::vector<std::string> &inputPins,
const std::vector<std::string> &outputPins,
const std::pair<std::string, std::string> &supercell_entry,
int instance_count, std::shared_ptr<spdlog::logger> logger)
inputPins_(inputPins), outputPins_(outputPins), cellName_(supercell_entry.first),
moduleName_(supercell_entry.second), logger_(logger), depth_(0),
instance_count_(instance_count) {}
std: :shared_ptr<spdlog::logger> logger_;
void handle(const slang::syntax::SyntaxNode &node);

void handle(const slang::syntax::ModuleDeclarationSyntax &module);

private:
const std::vector<std::string> &inputPins_;
const std::vector<std::string> &outputPins_;
const std::string cellName_;
const std::string moduleName_;
std::map<std::string, std::string> portInfoMap_; // Map from port name to direction
int depth_;
int instance_count_;

};

void getAST(const std::string &verilog_file, const std::string &cell);

#endif // VERILOG_UTILS_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.22 include/version.h File Reference 171

7.22 include/version.h File Reference

This graph shows which files directly or indirectly include this file:

include/version.h

Iﬂclude/LibFile.hpp | | include/LogicComparator.hpp |
| include/LibraryComparator.hpp | | src/LibFile.cpp | | src/LogicComparator.cpp |
| src/LibraryComparator.cpp | | include/LibFileOperations.hpp |

| src/LibFileOperations.cpp |

Macros

» Fdefine APP_NAME "ZlibValidation”

= Fdefine APP_VERSION_MAJOR 1

» #define APP_VERSION_MINOR 1

» Fdefine APP_VERSION_PATCH 2

» #define APP_VERSION "1.1.2"

» Fdefine APP_AUTHOR "Song Zixuan”

= #define APP_CONTACT "cedar@zju.edu.cn”

» #define BUILD_TIMESTAMP "2025-04-15 16:33:51"

7.22.1 Macro Definition Documentation

7.22.1.1 APP_AUTHOR

#define APP_AUTHOR "Song Zixuan"

Definition at line 10 of file version.h.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

172

File Documentation

7.22.1.2 APP_CONTACT

#define APP_CONTACT "cedar@zju.edu.cn"

Definition at line 11 of file version.h.

7.22.1.3 APP_NAME

#define APP_NAME "ZlibValidation"

Definition at line 5 of file version.h.

7.22.1.4 APP_VERSION

#define APP_VERSION "1.1.2"

Definition at line 9 of file version.h.

7.22.1.5 APP_VERSION_MAIJOR

#define APP_VERSION_MAJOR 1

Definition at line 6 of file version.h.

7.22.1.6 APP_VERSION_MINOR

#define APP_VERSION_MINOR 1

Definition at line 7 of file version.h.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.23 version.h 173

7.22.1.7 APP_VERSION_PATCH

#define APP_VERSION_PATCH 2

Definition at line 8 of file version.h.

7.22.1.8 BUILD_TIMESTAMP

#define BUILD_TIMESTAMP "2025-04-15 16:33:51"

Definition at line 12 of file version.h.

7.23 version.h

Go to the documentation of this file.
00001 // version.h.in
00002 #pragma once

00003
00004 // Auto-generated by CMake - DO NOT EDIT
00005 #define APP_NAME "ZlibValidation"

00006 #define APP_VERSION_MAJOR 1
00007 #define APP_VERSION_MINOR 1
00008 #define APP_VERSION_PATCH 2

00009 #define APP_VERSION "1.1.2"
00010 #define APP_AUTHOR "Song Zixuan"
00011 #define APP_CONTACT "cedar@zju.edu.cn"

00012 #define BUILD_TIMESTAMP "2025-04-15 16:33:51"

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

174

File Documentation

7.24 README.md File Reference

7.25

#include "Iterators.hpp"

Include dependency graph for Iterators.cpp:

src/lterators.cpp

Iterators.hpp

src/Iterators.cpp File Reference

LibGroup.hpp

LibAttribute.hpp

si2dr_liberty.h

7.26 lterators.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020

#include "Iterators.hpp"

string

GroupsIterator::GroupsIterator(si2drGroupsIdT groups, si2drErrorT &err)

: groups_(groups), err_(err) {
group_ = si2drIterNextGroup(groups &err_);

}

-

GroupsIterator::~GroupsIterator() { si2drIterQuit(groups_, &err_); }

void GroupsIterator::next() { group_ = si2drIterNextGroup(groups_, &err_); }

bool GroupsIterator::end() { return si2drObjectIsNull(group_, &err_); }

LibGroup GroupsIterator::get() { return LibGroup(group_, err_); }

AttributesIterator::AttributesIterator(si2drAttrsIdT attrs, si2drErrorT &err)

: attrs_(attrs), err_(err) {
attr_ = si2drIterNextAttr(attrs_, &err_);
}

AttributesIterator::~AttributesIterator() { si2drIterQuit(attrs_, &err_); }

void AttributesIterator::next() { attr_ = si2drIterNextAttr(attrs_, &err_); }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 175

00021 bool AttributesIterator::end() { return si2drObjectIsNull(attr_, &err_); }

00022

00023 LibAttribute AttributesIterator::get() { return LibAttribute(attr_, err_); }

00024

00025 ValuesIterator::ValuesIterator(si2drValuesIdT values, si2drErrorT &err)

00026 : values_(values), err_(err) {

00027 si2drIterNextComplexValue(values_, &vtype_, &int_, &float_, &str_, &bool_, &exprp_, &err_);
00028 }

00029 ValuesIterator::~ValuesIterator() { si2drIterQuit(values_, &err_); }

00030

00031 void ValuesIterator::next() {

00032 si2drIterNextComplexValue(values_, &vtype_, &int_, &float_, &str_, &bool_, &exprp_, &err_);
00033 }

00034 bool ValuesIterator::end() { return vtype_ == SI2DR_UNDEFINED_VALUETYPE; }

7.27 src/json_utils.cpp File Reference

#include "json_utils.hpp"

Include dependency graph for json__utils.cpp:

src/json_utils.cpp
json_utils.hpp
Iterators.hpp nlohmann/json.hpp spdlog/spdlog.h

LibGroup.hpp I I LibAttribute.hpp I

string si2dr_liberty.h

Functions

= std::vector< double > parseStringToVector (const std::string &str)
Parses a string representation of a vector of doubles into a vector of doubles.
= json generateLutJson (LibGroup &lib_lut_group, si2drErrorT &err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.
= json generateTimingJson (LibGroup &lib_timing_group, si2drErrorT &err)
Generates a JSON representation of timing information from a library timing group.
= json generatePowerJson (LibGroup &lib_power_group, si2drErrorT &err)
Converts a Liberty power group into a JSON representation.
» std::pair< std::string, json > generatePinJson (LibGroup &lib_pin_group, si2drErrorT &err)
Generates a JSON representation of a Liberty pin group.
= json generateCellJson (LibGroup &lib_cell_group, si2drErrorT &err)

Generates a JSON representation of a cell from a LibGroup object.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

176 File Documentation

7.27.1 Function Documentation

7.27.1.1 generateCellJson()

json generateCellJson (
LibGroup & lib_cell_group,

si2drErrorT & err)
Generates a JSON representation of a cell from a LibGroup object.

This function processes a LibGroup representing a cell and converts it into a JSON object. It extracts
the cell name and processes specific attributes such as area, cell_leakage_power, and cell_footprint. It
also processes pins within the cell by categorizing them based on their direction (input, output, internal,

inout).

Parameters

lib_cell_group | The LibGroup object representing the cell

err Reference to a si2drErrorT object for error handling

Returns
json A JSON object containing the cell's information with the following structure:

= "cell_name”: string - name of the cell

= "area”: float (optional) - cell area if present

= "cell_leakage_power": float (optional) - cell leakage power if present
= "cell_footprint”: string (optional) - cell footprint if present

= "input_pins": array - list of input pins

= "output_pins": array - list of output pins

= "internal_pins": array - list of internal pins

= "inout_pins": array - list of inout pins

Definition at line 271 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference

177

Here is the call graph for this function:

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator
LibFile::logic

funcLibFile

monoCheckLibFile

parseLibFile

supercellLibFile]—»{ LibFile::supercell

LibFile:verilog

| spicelLibFile]—»{ LibFile::spice
verilogLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

178 File Documentation

7.27.1.2 generateLutJson()

json generateLutJson (
LibGroup & 1lib_lut_group,

si2drErrorT & err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

This function iterates through the attributes of the provided LibGroup object representing a LUT and

converts them into a JSON structure. It specifically handles the following attributes:

= "index_1": Converted to a vector and stored in the JSON
= "index_2": Converted to a vector and stored in the JSON

= "values”: Each value is parsed into a vector and added to an array in the JSON

Any other attributes encountered will trigger a warning message.

Parameters

lib__lut_group | The LibGroup object containing the LUT data to be converted

err Reference to an si2drErrorT object to track any errors during processing

Returns

json A JSON object representing the LUT data with keys for "index_1", "index_2", and "values”

Definition at line 60 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

179

7.27 src/json_utils.cpp File Reference

Here is the call graph for this function:

Attributeslterator::end

Valueslterator::end

Attributeslterator::get

LibGroup::getAttrs

LibAttribute::getName

LibAttribute::getValues

Attributeslterator
::next

Valueslterator::next

parseStringToVector

Here is the caller graph for this function:

UibraryComparator:
LibraryComparator

. =
== O e e S) B | [genersteuon |
o~ generateTimingjson
e}
>t |—»{ Uiessperc |

(et | ——»{ Dorierapice |— | biemeriog |

verilogLibFile

7.27.1.3 generatePinJson()

std::pair< std::string, json > generatePinJson (

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

180 File Documentation

LibGroup & lib_pin_group,

si2drErrorT & err)
Generates a JSON representation of a Liberty pin group.

This function traverses a Liberty pin group, extracts relevant attributes and sub-groups, and converts

them into a JSON object. It also determines the pin's direction.

Processes the following pin attributes:

= direction
= max_transition, capacitance, rise_capacitance, fall_capacitance, max_capacitance (float types)

= function, power_down_function, related_ground_pin, related_power_pin, three_state (string

types)

= clock (boolean type)

Handles the following sub-groups:

= internal_power: Converted using generatePowerJson()

= timing: Converted using generateTimingJson()

Parameters

lib__pin_group | The Liberty pin group to process

err Reference to an error object for tracking Liberty API errors

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 181

Returns
A pair containing the pin direction (string) and the JSON representation of the pin

Definition at line 205 of file json__utils.cpp.

Here is the call graph for this function:

LibGroup::getGroups
Groupslterator::end
Groupslterator::get

‘ Attributeslterator::end

’ LibGroup::getAttrs
parseStringToVector

Valueslterator::end

LibAttribute::getValues

Valueslterator::next

3

Attributeslterator

Attributeslterator::get
N

LibAttribute::getName

Groupslterator::next

LibAttribute::getBoolean
LibAttribute::getFloat
LibGroup::getName

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

182

File Documentation

Here is the caller graph for this function:

LibraryComparator::
LibraryComparator

} LibFile::parse

} generateCelljson

| generatePinjson |

funcLibFile LibFile:logic
monoCheckLibFile [wibFilezmono |
parseLibFile
mai
i supercellLibFile ‘ ‘L LibFile::supercell
"spuceubﬁle } [tibFilezspice | l LibFilesverilog |
verilogLibFile

7.27.1.4 generatePowerJson()

json generatePowerJson (
LibGroup & lib_power_group,

si2drErrorT & err)

Converts a Liberty power group into a JSON representation.

This function processes a Liberty power group and converts its attributes and subgroups into a JSON

object. It handles attributes like "when", "related_pin"”, and "related_pg_pin", as well as "rise_power”

and "fall_power" subgroups.

Parameters

lib__power_group | The Liberty power group to convert

err Reference to an si2drErrorT object for error handling

Returns

json A JSON object representing the power group data

The function:

= Extracts string attributes (when, related_pin, related_pg_pin)

= Processes rise_power and fall_power subgroups by converting them to LUT JSON format

= Logs warnings for unknown power subgroup types

Definition at line 152 of file json__utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference

183

Here is the call graph for this function:

Attributeslterator::end |

Attributeslterator::get |

Groupslterator::end

L;ibAttribute::getValues I

|/ | Valueslterator::next |

/ / /) . 4
generateluison |

.) bl Valueslterator::end |

'I parseStringToVector |

.
B y| LibGroup::getAttrs |

~I» Attributeslterator
:next

\ Y
. | LibGroup::getGroups |

\

\. LibAttribute::getString I

\\ LibGroup::getType
AN

rGroupsIterator::next I

Here is the caller graph for this function:

LibraryComparator:
LibraryComparator
funcLibFile |— LibFile:logic
monoCheckLibFile } LibFile::

[}

44 L %I 4 ‘44 teCellj: ‘4..*

[supercellLibFile || LibFile:supercell
v
»| LibFile:verilog

spiceLibFile Libile:spice
verilogLibFile

7.27.1.5 generateTimingJson()

json generateTimingJson (

LibGroup & lib_timing_group,

si2drErrorT & err)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

184 File Documentation

Generates a JSON representation of timing information from a library timing group.

This function extracts timing attributes and sub-groups from a Liberty timing group and organizes them
into a JSON object. It processes standard timing attributes like 'related_pin', 'timing_type', 'timing«
_sense', and 'when', as well as timing tables such as 'cell_fall', 'cell_rise', 'fall_transition', 'rise_«

transition', 'fall_constraint', and 'rise_constraint'.

Parameters

lib_timing_group | The Liberty timing group to process

err Reference to an si2drErrorT object for error reporting

Returns

json A JSON object containing the extracted timing information

Definition at line 104 of file json__utils.cpp.

Here is the call graph for this function:

’-Attributeslterator::end |

LAttributeslterator::get |

l-GroupsIterator::end

uibAttribute::getValues |

LVaIuesIterator::next

I parseStringToVector |

generatelLutJson

i Valueslterator::end |

[_Li bGroup::getAttrs
generateTimingJson | {_Li bAttribute::getName

Attributeslterator

inext
Groupslterator::get

| LibGroup::getGroups |

I‘LibAttri bute::getString
LibGroup::getType

I Groupslterator::next |

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference

185

Here is the caller graph for this function:

LibraryComparator:
LibraryComparator

[unciore | [ibFieciogic |
[monoChecktbie | [ibFiesmono |

[Gbritezparse

[enerateceiiion

} generatePinjson \

| generateTimingjson |

[porsetprie |
[man
[Soperceiibrie |—»{ Uorfersupercel |
E—
[‘socebrie || Gbriesapice |—»{ Ubriemverioo

verilogLibFile

7.27.1.6 parseStringToVector()

std::vector< double > parseStringToVector (

const std::string & str)

Parses a string representation of a vector of doubles into a vector of doubles.

This function takes a string containing comma-separated numbers, cleans it by removing backslashes

and newline characters, and then converts each comma-separated value into a double that is added to

the resulting vector.

Parameters

‘ str ‘ The input string to be parsed, containing comma-separated numbers

Returns

std::vector<double> A vector of doubles parsed from the input string

Exceptions

std::invalid_argument | If the string contains values that cannot be converted to double

std::out_of_range | If the string contains values that are out of range for double

Definition at line 25 of file json_ utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

186

File Documentation

Here is the caller graph for this function:

CoranyCompartor
e Comprstr
[Foncore | [Gorverogc |
[oererseponerion |
[monchedciire | [Gortermons |+ Doriepose | »{ oonetecetion | —»{ generernion | [omrersetaon |- [omeSgOER]
SeneaTimingion

[mreeiorie |
[ron}

{ GbFile-supercel
spicelbfile Ubrle:spice [Gbiteveriog
veriloglibrie

7.28 json__utils.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078

#include "json_utils.hpp"

/%

json KALGE T PRI KA 2 —

FHEE 0 ATa4—aA)FHE (F4).

AP MITNRERLE Y JsON , AFSL, HA. FHE. BT HAAER null,

5 3 ATad—asEs ().
SNEFHEMEBR-ANFEE, ETUREELAL JSON 1, BFNL. HA. F4E. HF. ARER
null,

*/

std: :vector<double> parseStringToVector(const std::string &str) {
std::vector<double> result;

std::string cleaned_str;

// Remove backslashes and newline characters
for (char ¢ : str) {
if (c 1= "\\' & c !'= '"\n") {

cleaned_str += c;

std::stringstream ss(cleaned_str);

std::string item;

while (std::getline(ss, item, ',')) {
result.push_back(std::stod(item));

}

return result;

json generateLutJson(LibGroup &lib_lut_group, si2drErrorT &err) {

json lut_json;

AttributesIterator attr_iter(lib_lut_group.getAttrs(), err);
for (; lattr_iter.end(); attr_iter.next()) {

LibAttribute lib_attr = attr_iter.get();

std::string lut_attr_name = lib_attr.getName();

// spdlog::debug("LUT Attribute Name: {}", lib_attr.getName());
// spdlog::debug("Is Complex? {}", lib_attr.isComplex());

if (lut_attr_name == "index_1" || lut_attr_name == "index_2") {
ValuesIterator values_iter(lib_attr.getValues(), err);
for (; !values_iter.end(); values_iter.next()) {
// spdlog::debug("Type: {}", int(values_iter.vtype_)); // 5 is string
// spdlog::debug("Str: {}", values_iter.str_);
lut_json[lut_attr_name] = parseStringToVector(std::string(values_iter.str_));
}

} else if (lut_attr_name == "values") {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.28 json__utils.cpp 187

00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176

ValuesIterator values_iter(lib_attr.getValues(), err);
for (; !values_iter.end(); values_iter.next()) {
// spdlog::debug("{}", values_iter.str_);
lut_json["values"].push_back(parseStringToVector(std::string(values_iter.str_)));
}
} else {

spdlog: :warn("Unknown LUT attribute name: {}", lut_attr_name);

}

return lut_json;

json generateTimingJson(LibGroup &lib_timing_group, si2drErrorT &err) {

json timing_json;

AttributesIterator attr_iter(lib_timing_group.getAttrs(), err);
for (; lattr_iter.end(); attr_iter.next()) {
LibAttribute lib_attr = attr_iter.get();

std::string attr_name = lib_attr.getName();
if (attr_name == "related_pin" || attr_name == "timing_type" || attr_name == "timing_sense" ||
attr_name == "when") {
timing_json[attr_name] = lib_attr.getString();
}

// More timing attributes can be added here

GroupsIterator timing_sub_group_iter(lib_timing_group.getGroups(), err);
for (; !'timing_sub_group_iter.end(); timing_sub_group_iter.next()) {

LibGroup lib_timing_sub_group = timing_sub_group_iter.get();

std::string timing_sub_group_type = lib_timing_sub_group.getType();

// std::string timing_sub_group_name = lib_timing_sub_group.getName() ;

if (timing_sub_group_type == "cell_fall" || timing_sub_group_type == "cell_rise" ||
timing_sub_group_type == "fall_transition" || timing_sub_group_type == "rise_transition" ||
timing_sub_group_type == "fall_constraint" || timing_sub_group_type == "rise_constraint") {

timing_json[timing_sub_group_type] = generateLutJson(lib_timing_sub_group, err);
} else {
spdlog: :warn("Unknown timing sub group type: {}", timing_sub_group_type);

}

return timing_json;

json generatePowerJson(LibGroup &lib_power_group, si2drErrorT &err) {

json power_json;

AttributesIterator attr_iter(lib_power_group.getAttrs(), err);
for (; lattr_iter.end(); attr_iter.next()) {
LibAttribute lib_attr = attr_iter.get();

std::string attr_name = lib_attr.getName();

if (attr_name == "when" || attr_name == "related_pin" || attr_name == "related_pg_pin") {
power_json[attr_name] = lib_attr.getString();

}

// More power attributes can be added here

GroupsIterator power_sub_group_iter(lib_power_group.getGroups(), err);
for (; !'power_sub_group_iter.end(); power_sub_group_iter.next()) {

LibGroup lib_power_sub_group = power_sub_group_iter.get();

std::string power_sub_group_type = lib_power_sub_group.getType();
// std::string power_sub_group_name = lib_power_sub_group.getName();
if (power_sub_group_type == "rise_power") {
// spdlog::debug("Rise Power: {}", power_sub_group_name);
power_json["rise_power"] = generateLutJson(lib_power_sub_group, err);
} else if (power_sub_group_type == "fall_power") {

power_json["fall_power"] = generateLutJson(lib_power_sub_group, err);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

188

File Documentation

00177
00178
00179
00180
00181
00182
00183
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286

} else {
spdlog: :warn("Unknown power sub group type: {}", power_sub_group_type);
}
}
return power_json;
}
std::pair<std::string, json> generatePinJson(LibGroup &lib_pin_group, si2drErrorT &err) {

json pin_json;
std::string direction;

pin_json["pin_name"] = lib_pin_group.getName();

AttributesIterator attr_iter(lib_pin_group.getAttrs(), err);
for (; lattr_iter.end(); attr_iter.next()) {
LibAttribute lib_attr = attr_iter.get();

std::string attr_name = lib_attr.getName();
if (attr_name == "direction") {

direction = lib_attr.getString();

"

else if (attr_name == "max_transition" || attr_name == "capacitance" ||

attr_name == "rise_capacitance" || attr_name == "fall_capacitance" ||

attr_name == "max_capacitance") {

pin_json[attr_name] = lib_attr.getFloat();

"

else if (attr_name == "function" || attr_name == "power_down_function" ||

attr_name == "related_ground_pin" || attr_name == "related_power_pin" ||

attr_name == "three_state") {

pin_json[attr_name] = lib_attr.getString();

"

else if (attr_name == "clock") {
pin_json[attr_name] = lib_attr.getBoolean();
}

// More pin attributes can be added here

GroupsIterator pin_sub_group_iter(lib_pin_group.getGroups(), err);

for (; !'pin_sub_group_iter.end(); pin_sub_group_iter.next()) {

LibGroup lib_pin_sub_group = pin_sub_group_iter.get();

std::string pin_sub_group_type = lib_pin_sub_group.getType();

// std::string pin_sub_group_name = 1lib_pin_sub_group.getName();

if (pin_sub_group_type == "internal_power") {

json power_json = generatePowerJson(lib_pin_sub_group, err);

pin_json["power_arcs"].push_back(power_json) ;

-

else if (pin_sub_group_type == "timing") {

// spdlog::debug("Has Timing: {}", lib_pin_group.getName());

json timing_json = generateTimingJson(lib_pin_sub_group, err);

pin_json["timing_arcs"].push_back(timing_json);

else {

-

spdlog: :warn("Unknown pin sub group type: {}", pin_sub_group_type);

}

return std::make_pair(direction, pin_json);

json generateCellJson(LibGroup &lib_cell_group, si2drErrorT &err) {

json cell_json;

cell_json["cell_name"] = lib_cell_group.getName();
AttributesIterator attr_iter(lib_cell_group.getAttrs(), err);
for (; lattr_iter.end(); attr_iter.next()) {

LibAttribute lib_attr = attr_iter.get();

std::string attr_name = lib_attr.getName();

if (attr_name == "area" || attr_name == "cell_leakage_power") {

cell_json[attr_name] = lib_attr.getFloat();
} else if (attr_name == "cell_footprint") {

cell_json[attr_name] = 1lib_attr.getString();
}

// More cell attributes can be added here

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.29 src/LibAtrribute.cpp File Reference

189

00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314 }

GroupsIterator cell_sub_group_iter(lib_cell_group.getGroups(), err);
for (; !'cell_sub_group_iter.end(); cell_sub_group_iter.next()) {
LibGroup lib_cell_sub_group = cell_sub_group_iter.get();

std::string cell_sub_group_type = lib_cell_sub_group.getType();
// std::string cell_sub_group_name = lib_cell_sub_group.getName();

// spdlog::debug("Cell Sub Group Type: {}", cell_sub_group_type);
// spdlog::debug("Cell Sub Group Name: {}", cell_sub_group_name);

if (cell_sub_group_type == "pin") {
auto [direction, pin_json] = generatePinJson(lib_cell_sub_group, err);
if (direction == "input") {

cell_json["input_pins"].push_back(pin_json);

-

else if (direction == "output") {

cell_json["output_pins"].push_back(pin_json);

} else if (direction == "intermal") {
cell_json["internal_pins"].push_back(pin_json) ;

} else if (direction == "inout") {
cell_json["inout_pins"].push_back(pin_json);

} else {

spdlog: :warn("Unknown direction: {}", direction);

}

return cell_json;

7.29 src/LibAtrribute.cpp File Reference

#include "LibAttribute.hpp"

Include dependency graph for LibAtrribute.cpp:

src/LibAtrribute.cpp

LibAttribute.hpp

string si2dr_liberty.h

7.30 LibAtrribute.cpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

190 File Documentation

00001 #include "LibAttribute.hpp"

00002

00003 LibAttribute::LibAttribute(si2drAttrIdT attr, si2drErrorT &err) : attr_(attr), err_(err) {}
00004

00005 LibAttribute::~LibAttribute() {}

00006

00007 std::string LibAttribute::getName() {

00008 si2drStringT name = si2drAttrGetName(attr_, &err_);

00009 return name ? std::string(name) : std::string();

00010 }

00011

00012 bool LibAttribute::isComplex() { return si2drAttrGetAttrType(attr_, &err_) ? 1 : 0; }

00013

00014 si2drValuesIdT LibAttribute::getValues() { return si2drComplexAttrGetValues(attr_, &err_); }
00015

00016 long int LibAttribute::getInt() { return si2drSimpleAttrGetInt32Value(attr_, &err_); }

00017

00018 double LibAttribute::getFloat() { return si2drSimpleAttrGetFloat64Value(attr_, &err_); }
00019

00020 std::string LibAttribute::getString() {

00021 si2drStringT str = si2drSimpleAttrGetStringValue(attr_, &err_);

00022 return str ? std::string(str) : std::string();

00023 }

00024

00025 bool LibAttribute::getBoolean() { return si2drSimpleAttrGetBooleanValue(attr_, &err_) 7 1 : 0; }

7.31 src/LibFile.cpp File Reference

#include "LibFile.hpp"
Include dependency graph for LibFile.cpp:

(oo]
[oreren |
i on sy sodogiinksasic | " spdogaincstiont | e
e [[[onwiares | A e i
otream [[onordored_se |+ | Sanymaneyriacviorh | [nordersd iy | [snghynaxsympriterh | [spoghpogh Resiors s | Aonmannizonon

GGores | [Toavibverop

sting si2dr libertyh

7.32 LibFile.cpp

Go to the documentation of this file.

00001 #include "LibFile.hpp"

00002

00015 LibFile::LibFile(const std::string &filepath, const std::string &loggername)
00016 : filepath_(filepath), loggername_(loggername) {

00017 filename_ = filepath_.string();

00018 basename_ = filepath_.stem().string();

00019 jsonname_ = basename_ + ".json";

00020

00021 auto console_sink = std::make_shared<spdlog: :sinks::stdout_color_sink_mt>();
00022 console_sink->set_level(spdlog::level::info);

00023

00024 auto file_sink = std::make_shared<spdlog::sinks::basic_file_sink_mt>(loggername_, true);
00025 file_sink->set_level(spdlog::level::debug);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 191

00026

00027 std::vector<spdlog::sink_ptr> sinks{console_sink, file_sink};

00028 logger_ = std::make_shared<spdlog::logger>(loggername_, sinks.begin(), sinks.end());
00029 logger_->set_level(spdlog::level::debug);

00030

00031 logger_->info("Created LibFile object for '{}'", filename_);

00032 logger_->info("Debug log in: '{}'", loggername_);

00033 }

00034

00035 LibFile::~LibFile() { logger_->info("Closing file: '{}'", filename_); }
00036

00046 void LibFile::writeJsonToFile() {

00047 std::ofstream out(jsonname_);

00048 if (lout.is_open()) {

00049 logger_->error("Could not open file '{}' for writing", jsonname_);
00050 return;
00051 }

00052 out << lib_json_.dump(2);

00053 out.close();

00054 logger_->info("JSON data written to '{}'", jsonname_);
00055 }

00056

00077 void LibFile::read() {

00078 logger_->info("Reading '{}' ...", filename_);

00079

00080 auto start = std::chrono::high_resolution_clock: :now();
00081 si2drReadLibertyFile(const_cast<char *>(filepath_.c_str()), &err_);
00082 auto end = std::chrono::high_resolution_clock: :now();

00083 std::chrono: :duration<double> duration = end - start;

00084

00085 if (err_ == SI2DR_INVALID_NAME) {

00086 logger_->error("Could not open file '{}' for parsing, quitting...", filename_);
00087 exit(301);

00088 } else if (err_ == SI2DR_SYNTAX_ERROR) {

00089 logger_->error("Syntax Errors were detected in the input file!");
00090 exit(401);

00091 } else {

00092 logger_->info("Done. Read time: {:.2f} seconds", duration.count());
00093 }

00094 }

00095

00116 void LibFile::parse() {
00117 si2drPIInit(&err_); // Initialize private error handler

00118 this->read(); // Read the Liberty file

00119

00120 logger_->info("Parsing '{}' ...", filename_);

00121 // Create a scope for the top-level groups iteration

00122 {

00123 GroupsIterator group_iter(si2drPIGetGroups(&err_), err_);
00124 for (; !group_iter.end(); group_iter.next()) {

00125 LibGroup lib_group = group_iter.get();

00126

00127 if (lib_group.getName() != "") {

00128 libname_ = lib_group.getName();

00129 1ib_json_["library_name"] = this->libname_;

00130 logger_->info("Library Name: {}", libname_);

00131 } else {

00132 logger_->warn("Library Name: <NONAME>");

00133 }

00134 // Second level groups

00135 GroupsIterator sub_group_iter(lib_group.getGroups(), err_);
00136 for (; !sub_group_iter.end(); sub_group_iter.next()) {
00137 LibGroup lib_sub_group = sub_group_iter.get();

00138

00139 std::string sub_group_type = lib_sub_group.getType();
00140 std::string sub_group_name = lib_sub_group.getName();
00141

00142 if (sub_group_type == "cell") {

00143 logger_->debug("Cell Name: {}", sub_group_name);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

192

File Documentation

00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233

// if (sub_group_name != "AN2DO") {
// continue;
// Y
// Handle each cell
json cell_json = generateCellJson(lib_sub_group, err_);
1ib_json_["cells"].push_back(cell_json);
} else if (sub_group_type == "operating_conditions") {
logger_->info("Operating Conditions: {}", sub_group_name);
// Get PVT from Operating Conditions
AttributesIterator attr_iter(lib_sub_group.getAttrs(), err_);
for (; lattr_iter.end(); attr_iter.next()) {
LibAttribute lib_attr = attr_iter.get();
logger_->debug("Attribute Name: {}", lib_attr.getName());
logger_->debug("Int Value: {}", lib_attr.getInt());
logger_->debug("Float Value: {}", lib_attr.getFloat());
logger_->debug("String Value: {}", lib_attr.getString());
if (lib_attr.getName() == "process") {
process_ = lib_attr.getInt();
1ib_json_["process"] = process_;
} else if (lib_attr.getName() == "voltage") {
voltage_ = lib_attr.getFloat();
// Round to 2 decimal places to avoid floating-point precision issues
1lib_json_["voltage"] = std::round(voltage_ * 100) / 100.0;
} else if (lib_attr.getName() == "temperature") {
temperature_ = lib_attr.getInt();
1ib_json_["temperature"] = temperature_;
}
}
logger_->info("P: {}, V: {}, T: {}", process_, voltage_, temperature_);
}
// sub_group_iter's lifetime ends here, and the destructor is called
¥
}
// group_iter's lifetime ends here, and the destructor is called
}
si2drPIQuit (&err_);
}

void LibFile::modify() { logger_->info("Modifying the file..."); }

bool LibFile::checkTimingArcMonotonicity(const json &cell, const json &pin, const json &arc,
const std::string &timing_arc_name, const bool is_slew) {
if (arc.contains("when") && !arc["when"].get<std::string>().empty()) {
logger_->debug(
"Checking cell: '{}', pin: '{}', related_pin: '{}', timing_arc: '{}', when: '{}'",
cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),
arc["related_pin"].get<std::string>(), timing_arc_name, arc["when"].get<std::string>());
} else {
logger_->debug("Checking cell: '{}', pin: '{}', related_pin: '{}', timing_arc: '{}'",
cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),
arc["related_pin"].get<std::string>(), timing_arc_name);
}
bool is_monotonic = true; // Assume the values are monotonic initially
if (arc.contains(timing_arc_name) && arc[timing_arc_name].contains("values")) {
std::vector<std::vector<double>> value_matrix;
// Generate a matrix of values from the JSON array
for (const auto &row_val : arc[timing_arc_name] ["values"]) {
std::vector<double> row_data;
// Check if the value is an array
if (lrow_val.is_array()) {
logger_->error("Invalid format: '{}' values should be an array of arrays in cell '{}', pin "
"'{}', related_pin '{}'",
timing_arc_name, cell["cell_name"].get<std::string>(),
pin["pin_name"].get<std::string>(), arc["related_pin"].get<std::string>());
return false;
}
// Check for non-numeric values
for (const auto &val : row_val) {

if (val.is_number()) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp

193

00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302

row_data.push_back(val.get<double>());
} else {
logger_->warn("Non-numeric value found in '{}'.values, skipping value: {} in cell '{}', "
"pin '{}', related_pin '{}'",
timing_arc_name, val.dump(), cell["cell_name"].get<std::string>(),

pin["pin_name"].get<std::string>(), arc["related_pin"].get<std::string>());

}

value_matrix.push_back(row_data);

// Check the matrix for monotonicity

if (!value_matrix.empty() && !value_matrix[0].empty()) {

// Check the monotonic incrementality of rows (by output load capacitance, index 2)
for (size_t i = 0; i < value_matrix.size(); ++i) {
for (size_t j = 1; j < value_matrix[i].size(); ++j) {
if ((value_matrix[il[j] < value_matrix[il[j - 1] &&
pin["pin_name"] != arc["related_pin"l) ||
(value_matrix[i] [j] == 0 && value_matrix[i][j - 1] == 0)) {
// 1f contains "when" key, log the when value
if (arc.contains("when") && 'arc["when"].get<std::string>().empty()) {
logger_->warn("Non-monotonic (by load) '{}' values: ({}, {} {} < ({}, {H {3
"for Cell: {} Pin: {}->{} when: \"{}\"",
timing_arc_name, i, j, value_matrix[il[jl, i, j - 1,
value_matrix[i][j - 1], cell["cell_name"].get<std::string>(),
arc["related_pin"].get<std::string>(),
pin["pin_name"].get<std::string>(), arc["when"].get<std::string>());
} else {
logger_->warn("Non-monotonic (by load) '{}' values: ({}, {}) {} < ({}, {H) {3
"for Cell: {} Pin: {}->{}",
timing_arc_name, i, j, value_matrix[il[j], i, j - 1,
value_matrix[i][j - 1], cell["cell_name"].get<std::string>(),
arc["related_pin"].get<std::string>(),
pin["pin_name"].get<std::string>());
}

is_monotonic = false;

}
if (is_slew) {
// Check the monotonic incrementality of columns (by input slew, index 1)
for (size_t j = 0; j < value_matrix[0].size(); ++j) {
for (size_t i = 1; i < value_matrix.size(); ++i) {
if ((value_matrix[il] [j] < value_matrix[i - 1][j] &&
pin["pin_name"] != arc["related_pin"]) ||
(value_matrix[i][j] == 0 && value_matrix[i - 1]1[j] == 0)) {
// If contains "when" key, log the when value
if (arc.contains("when") && 'arc["when"].get<std::string>().empty()) {
logger_->warn("Non-monotonic (by slew) '{}' values: ({}, {}) {} < ({}, {®) {3 "
"for Cell: {} Pin: {}->{} when: \"{}\"",
timing_arc_name, i, j, value_matrix[i][j], i - 1, j,
value_matrix[i - 1]1[j], cell["cell_name"].get<std::string>(),
arc["related_pin"].get<std::string>(),
pin["pin_name"].get<std::string>(), arc["when"].get<std::string>());
} else {
logger_->warn("Non-monotonic (by slew) '{}' values: ({}, {}) {} < ({3}, {H {3 "
"for Cell: {} Pin: {}->{}",
timing_arc_name, i, j, value_matrix[il[jl, i - 1, j,
value_matrix[i - 1][j], cell["cell_name"].get<std::string>(),
arc["related_pin"].get<std::string>(),
pin["pin_name"].get<std::string>());
3

is_monotonic = false;

}

} else {

logger_->warn(

"Empty or invalid 'values' array found for cell: '{}', pin: '{}', related_pin: '{}', "

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

194 File Documentation

00303 "timing_arc: '{}'",

00304 cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),
00305 arc["related_pin"].get<std::string>(), timing_arc_name);

00306 }

00307 }

00308 return is_monotonic;

00309 }

00310

00331 void LibFile::mono(const bool is_slew) {

00332 /*

00333 * Use this command to check the following data in the current library to ensure
00334 * the tables are monotonically increasing with respect to output load:

00335 * cell_rise retaining rise

00336 * cell_fall retaining_fall

00337 * rise_transition retain_rise_slew

00338 * fall_transition retain_fall_slew

00339 * mpw

00340 */

00341 logger_->info("Monotonicity check of '{}' starting ...", filename_);
00342

00343 if (!std::filesystem::exists(jsonname_)) {

00344 logger_->info("JSON file not found. Parsing Liberty file first.");
00345 this->parse();

00346 this->writeJsonToFile();

00347 } else {

00348 // Read the JSON file into json object

00349 std::ifstream in(jsonname_);

00350 if (lin.is_open()) {

00351 logger_->error("Could not open file '{}' for reading", jsonname_);
00352 return;

00353 }

00354 try {

00355 lib_json_ = json::parse(in);

00356 } catch (const json::parse_error &e) {

00357 logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());
00358 in.close();

00359 return;

00360 }

00361 in.close();

00362 }

00363

00364 std::map<std::string, bool> cell_monotonicity_status; // Track pass/fail status for each cell
00365 std::vector<std::string> failed_cells; // List of failed cell names

00366 int total_cells = 0;

00367 int passed_cells = 0;

00368

00369 // Check the monotonicity of delay values

00370 // The index 1 (time values) must be monotonically increasing and >= 0

00371 for (const auto &cell : lib_json_["cells"]) {

00372 total_cells++;

00373 bool cell_is_monotonic = true; // Assume cell is monotonic initially

00374 std::string cell_name = cell["cell_name"].get<std::string>();

00375 cell_monotonicity_status[cell_name] =

00376 true; // Initialize to pass, will be set to false if any check fails
00377

00378 if (cell.contains("output_pins")) {

00379 for (const auto &pin : cell["output_pins"]) {

00380 if (pin.contains("timing_arcs")) {

00381 for (const auto &arc : pin["timing_arcs"]) {

00382 // Check 4 timing arc names and accumulate monotonicity status
00383 for (const auto &name :

00384 {"cell_rise", "cell_fall", "rise_transition", "fall_transition"}) {
00385 if (!checkTimingArcMonotonicity(cell, pin, arc, name, is_slew)) {
00386 cell_is_monotonic = false;

00387 3

00388 }

00389 }

00390 ¥

00391 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp

195

00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479

}
if (cell.contains("input_pins")) {
for (const auto &pin : cell["input_pins"]) {
if (!pin.contains("clock")) {
continue; // Skip non-clock pins
}
// logger_->debug("Clock pin: {}", pin["pin_name"].get<std::string>());
if (pin.contains("timing_arcs")) {
for (const auto &arc : pin["timing_arcs"]) {
if (arc.contains("timing_type")) {
// logger_->debug("Timing type: {}", arc["timing_type"].get<std::string>());
if (arc["timing_type"].get<std::string>() == "min_pulse_width") {
for (const auto &name : {"rise_constraint", "fall_constraint"}) {
if (!checkTimingArcMonotonicity(cell, pin, arc, name, is_slew)) {
cell_is_monotonic = false;
}
}
¥
}
}
}
}
}
// Update cell status based on all checks
cell_monotonicity_status[cell_name] = cell_is_monotonic;
if (cell_is_monotonic) {
passed_cells++;
} else {
failed_cells.push_back(cell_name);
}
}
logger_->info("Monotonicity check of '{}' completed.", filename_);
// Output summary statistics
logger_->info("validate_monotonicity : {} out of {} cells passed", passed_cells, total_cells);
logger_->info("validate_monotonicity : {} out of {} cells failed", total_cells - passed_cells,
total_cells);
if (!failed_cells.empty()) {
std::stringstream failed_cells_ss;
for (size_t i = 0; i < failed_cells.size(); ++i) {
failed_cells_ss << failed_cells[i];
if (i < failed_cells.size() - 1) {
failed_cells_ss << ", "; // Add comma if not the last element
¥
}
logger_->info("Failed cell list : {}", failed_cells_ss.str());
}
¥
void LibFile::supercell(const int chain_length, const std::vector<std::string> &cell_names) {

/*
* Supercells are named as follows:
* <cellname>__X<chain_length>__<input_pin>__<output_pin>
*/

logger_->info("Creating supercells for '{}'", filename_);

if (!std::filesystem::exists(jsonname_)) {
logger_->info("JSON file not found. Parsing Liberty file first.");
this->parse();
this->writeJsonToFile();
} else {
// Read the JSON file into json object
std::ifstream in(jsonname_);
if ('in.is_open()) {
logger_->error("Could not open file '{}' for reading", jsonname_);
return;
}
try {

lib_json_ = json::parse(in);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

196

File Documentation

00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548

-

catch (const json::parse_error &e) {

logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());
in.close();

return;

}

in.close();

// write to .map file

std::ofstream out(basename_ + ".map");

if (lout.is_open()) {
logger_->error("Could not open file '{}' for writing", basename_ + ".map");
return;

}

// if celll_names is empty, create supercells for all cells

// else create supercells for only the specified cells

// Check if we're processing specific cells or all cells

bool process_all_cells = cell_names.empty();

if (process_all_cells) {
logger_->info("Creating supercells for ALL cells in '{}'", filename_);
} else {
logger_->info("Creating supercells for {} specified cells in '{}'", cell_names.size(),

filename_);

// Create a set for faster lookups if we have specific cell names
std::unordered_set<std::string> cell_set;

std: :unordered_set<std::string> found_cells;

if (!process_all_cells) {

cell_set.insert(cell_names.begin(), cell_names.end());

for (const auto &cell : lib_json_["cells"]) {
bool is_sequential = false;

std::string cell_name = cell["cell_name"].get<std::string>();

// Skip cells not in the specified list
if (!process_all_cells && cell_set.find(cell_name) == cell_set.end()) {

continue;

// Mark this cell as found
if (!process_all_cells) {

found_cells.insert(cell_name);

logger_->debug("Creating supercells for cell: '{}'", cell_name);

std::vector<std::string> output_pins;
std::vector<std::string> input_pins;
// Extract input and output pins
if (cell.contains("output_pins")) {
for (const auto &pin : cell["output_pins"]) {
output_pins.push_back(pin["pin_name"].get<std::string>());

}
if (cell.contains("input_pins")) {
for (const auto &pin : cell["input_pins"]) {
if (pin.contains("clock")) {
is_sequential = true;
// clock pin not use for supercell
continue;
}
input_pins.push_back(pin["pin_name"].get<std::string>());

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp

197

00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641

// create supercells for all combinations of input and output pins
for (const auto &output_pin : output_pins) {
for (const auto &input_pin : input_pins) {
if (is_sequential) {
const int chain_len = 1;
std::string supercell_name =
cell_name + "__X" + std::to_string(chain_len) + "__" + input_pin + "__" + output_pin;

out << cell_name << " " << supercell_name << std::endl;

"

else {
std::string supercell_name = cell_name + "__X" + std::to_string(chain_length) + "__" +
input_pin + "__" + output_pin;

out << cell_name << " " << supercell_name << std::endl;

// Check for cells that were specified but not found
if (!process_all_cells) {
std::vector<std::string> not_found_cells;
for (const auto &requested_cell : cell_names) {
if (found_cells.find(requested_cell) == found_cells.end()) {
not_found_cells.push_back(requested_cell);

// Output warning for cells that weren't found
if (!'not_found_cells.empty()) {
std::string missing_cells = not_found_cells[0];
for (size_t i = 1; i < not_found_cells.size(); ++i) {
missing_cells += ", " + not_found_cells[i];
}
logger_->warn("{} specified cell{} not found in the library: {}", not_found_cells.size(),

not_found_cells.size() > 1 ? "s were" : " was", missing_cells);

out.close();

logger_->info("Supercell creation complete in '{}'", basename_ + ".map");

void LibFile::verilog(const int chain_length, const std::vector<std::string> &cell_names) {

logger_->info("Creating Verilog for '{}'", filename_);

this->supercell(chain_length, cell_names);

// Create a temporary file for individual modules
std::string temp_file = basename_ + "_temp.v";
std::ofstream out(temp_file);
if (lout.is_open()) {
logger_->error("Could not open temp file '{}' for writing", temp_file);

return;

// Read the .map file into a vector to preserve all entries and their order
std::vector<std::pair<std::string, std::string>> supercell_entries;
std::ifstream in(basename_ + ".map");
if (!in.is_open()) {

logger_->error("Could not open file '{}' for reading", basename_ + ".map");

return;

std::string line;
while (std::getline(in, line)) {
std::istringstream iss(line);
std::string cell_name, supercell_name;
if (!(iss >> cell_name >> supercell_name)) {
logger_->warn("Invalid line format in map file: '{}'", line);

continue;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

198

File

Documentation

00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710

}
supercell_entries.push_back({cell_name, supercell_namel});
}

in.close();

logger_->info("Read {} supercells from '{}'", supercell_entries.size(), basename_ + ".map");

// Store module information for top-level creation
std::vector<std::string> module_names;
std::map<std::string, std::vector<std::string>> module_inputs;

std::map<std::string, std::vector<std::string>> module_outputs;

// Generate verilog module for each supercell
for (const auto &supercell_entry : supercell_entries) {
// Check if the cell is sequential
bool is_sequential = false;
// Count the number of instances will be created in verilog
int instance_count = 0;
// Get original cell name from pair
const std::string &cell_name = supercell_entry.first;
// Get supercell name(as well as module name) from pair

const std::string &module_name = supercell_entry.second;

// Store module name for top-level creation

module_names.push_back(module_name) ;

logger_->info("Creating Module: '{}' from Cell '{}", module_name, cell_name);

// Get the cell JSON object
Jjson cell_json;
for (const auto &cell : lib_json_["cells"]) {
if (cell["cell_name"].get<std::string>() == cell_name) {
cell_json = cell;

break;

// Get input/output pins from the cell JSON object
std::vector<std::string> input_pins;
std::vector<std::string> output_pins;
std::stringstream input_pins_ss;
std::stringstream output_pins_ss;
if (cell_json.contains("input_pins")) {
for (const auto &pin : cell_json["input_pins"]) {
if (pin.contains("clock")) {
is_sequential = true;
}
std::string pin_name = pin["pin_name"].get<std::string>();
input_pins.push_back(pin_name);

input_pins_ss << pin_name << ", ";

// Store input pin name for top-level creation

module_inputs [module_name] .push_back(pin_name) ;

}
if (cell_json.contains("output_pins")) {
for (const auto &pin : cell_json["output_pins"]) {
std::string pin_name = pin["pin_name"].get<std::string>();
output_pins.push_back(pin_name) ;

output_pins_ss << pin_name << ", ";

// Store output pin name for top-level creation

module_outputs [module_name] .push_back(pin_name) ;

}
logger_->debug("Input pins set: {}", input_pins_ss.str());
logger_->debug("Output pins set: {}", output_pins_ss.str());

// Sequential cells will have only one instance

// Combinational cells will have instances equal to chain length

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp

199

00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775
00776
00777
00778
00779

if (is_sequential) {
instance_count = 1;
} else {

instance_count = chain_length;

// Create ANSI port list

std::string port_list_text = "(";

// Add input ports

bool isFirstPort = true;

for (const auto &input_pin : input_pins) {

if (lisFirstPort) {

port_list_text += ", ";
}
port_list_text += "input " + input_pin;
isFirstPort = false;
}
// Add output ports
for (const auto &output_pin : output_pins) {
if (lisFirstPort) {

port_list_text += ", ";
}
port_list_text += "output " + output_pin;
isFirstPort = false;
}
port_list_text += ")";
logger_->debug("ANSI Port list: {}", port_list_text);

// Creat full module header text

std::string fullModuleText = "module " + module_name + port_list_text + ";\nendmodule“;

logger_->debug("Full module text: {}", fullModuleText);

// Generate the syntax tree for the module using slang library
auto tree = slang::syntax::SyntaxTree::fromText(fullModuleText) ;
if (tree) {

// Add ports to the syntax tree

ModuleRewriter rewriter(input_pins, output_pins, supercell_entry, instance_count,

tree = rewriter.transform(tree);
// Revisit the syntax tree to check architecture

// rewriter.visit(tree->root());

// Output the transformed syntax tree
out << "“timescale 1ns/10ps" << std::endl;
out << slang::syntax::SyntaxPrinter::printFile(*tree) << std::endl << std::endl;

else {

-

logger_->error("Failed to create syntax tree for module '{}'", module_name);

continue;

out.close();

// Create the top-level module
std::ofstream final_out(basename_ + ".v");
if (!final_out.is_open()) {
logger_->error("Could not open file '{}' for writing", basename_ + ".v");

return;

// Collect all port names separately for inputs and outputs
std::vector<std::string> all_input_ports;
std::vector<std::string> all_output_ports;

std::stringstream top_instances;

// First pass: collect all port names
for (const auto &module_name : module_names) {
// Collect input port names

for (const auto &pin : module_inputs[module_name]) {

logger_);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

200

File Documentation

00780
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810
00811
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843
00844
00845
00846
00847
00848

all_input_ports.push_back(module_name + "__" + pin);

// Collect output port names
for (const auto &pin : module_outputs[module_name]) {

all_output_ports.push_back(module_name + "__" + pin);

// Create instance
std::string instance_name = "I_" + module_name.substr(0, module_name.find("__X"));

for (size_t i = module_name.find("__X") + 3; i < module_name.length(); i++) {

if (module_name[i] == '_' && module_name[i + 1] == '_') {
instance_name += "__" + module_name.substr(i + 2);
break;

}

// Generate port connections for this instance
std::stringstream instance_ports;
for (const auto &pin : module_inputs[module_name]) {
instance_ports << "." << pin << "(" << module_name << "__" << pin << "), ";
}
for (const auto &pin : module_outputs[module_name]) {

instance_ports << "." << pin << "(" << module_name << "__" << pin << "), ";

// Remove last comma and space
std::string instance_ports_str = instance_ports.str();
if (linstance_ports_str.empty()) {

instance_ports_str = instance_ports_str.substr(0, instance_ports_str.length() - 2);

top_instances << " " << module_name << " " << instance_name << " (" << instance_ports_str

<< "M5\n";

// Now generate the port list with all inputs first, then all outputs

std::stringstream top_ports;

// Add all input ports first
for (size_t i = 0; i < all_input_ports.size(); ++i) {
top_ports << all_input_ports[il;
if (i < all_input_ports.size() - 1 || 'all_output_ports.empty()) {
top_ports << ", ";

// Then add all output ports
for (size_t i = 0; i < all_output_ports.size(); ++i) {
top_ports << all_output_ports[i];
if (i < all_output_ports.size() - 1) {
top_ports << ", ";

// Generate input and output declarations
std::stringstream top_inputs;

std::stringstream top_outputs;

// Generate input declarations
for (const auto &port : all_input_ports) {
top_inputs << " input " << port << ";\n";

// Generate output declarations
for (const auto &port : all_output_ports) {
top_outputs << " output " << port << ";\n";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp

201

00849
00850
00851
00852
00853
00854
00855
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872
00873
00874
00875
00876
00877
00889
00890
00891
00892
00893
00894
00895
00896
00897
00898
00931
00932
00933
00934
00935
00936
00937
00938
00939
00940
00941
00942
00943
00944
00945
00946
00947
00948
00949
00950
00951
00952
00953
00954
00955
00956
00957
00958
00959
00960

// Write the

final_out
final_out
final_out
final_out
final_out
final_out
final_out

final_out

// Append

<<
<<
<<
<<
<<
<<
<<

<

n

top module

"“timescale 1ns/10ps" << std::endl;

"module validate_top (" << top_ports.str() << ");" << std::endl;
std::endl; // Add newline before port declarations
top_inputs.str();

top_outputs.str();

std::endl;

top_instances.str();

"endmodule" << std::endl << std::endl;

the module definitions from the temporary file

std::ifstream temp_in(temp_file);

if (temp_in.is_open()) {

final_out << temp_in.rdbuf();

temp_in.close();

} else {

logger_->error("Could not open temp file '{}' for reading", temp_file);

final_out.close();

// Remove temporary file

// if (std::filesystem::exists(temp_file)) {

// std::filesystem: :remove (temp_file);

/1Y

logger_->info("Verilog creation complete in '{}'", basename_ + ".v");

std::vector<std::string> LibFile::splitString(const std::string &s) {

std::vector<std::string> tokens;

std::stringstream ss(s);

std::string token;

while (ss >> token) {

tokens.push_back(token) ;

}

return tokens;

void LibFile::generateRCLines(std::ofstream &outFile, const std::string &netName, int instancelIndex,

bool isFinalStage) {

// --- Default RC Values (as observed in the target SPICE) ---

const double R1_INTERMEDIATE = 0.01;

const double C1_INTERMEDIATE = 5.3e-16;

const double R2_INTERMEDIATE = 0.01;

const double R1_FINAL = 1le-2;

const double C1_FINAL = 1e-18;

const std::string CAP_GROUND = "COREGND1"; // Assumed ground for capacitors

std::string

std::string

std::string

std::string

std::string

riName = "R1_" + std::to_string(instanceIndex);
ciName = "C1_" + std::to_string(instancelIndex);
r2Name = "R2_" + std::to_string(instanceIndex);
nodel = netName + ":1"; // Intermediate node 1

node2 = netName + ":2"; // Intermediate node 2

// Set precision for scientific notation output

outFile << std::scientific << std::setprecision(1);

if (!isFinalStage) {
// Intermediate RCR structure (R1-C1-R2)

outFile << riName << " " << nodel << " " << node2 << " " << R1_INTERMEDIATE << std::endl;
outFile << clName << " " << node2 << " " << CAP_GROUND << " " << C1_INTERMEDIATE << std::endl;
outFile << r2Name << " " << node2 << " " << netName << " " << R2_INTERMEDIATE << std::endl;

} else {

// Final RC structure (R1-Cl1 connected to the instance output node :1)

// Note: The target SPICE connects R1 between nodel and the final port (netName).
outFile << riName << " " << nodel << " " << netName << " " << R1_FINAL << std::endl;
outFile << clName << " " << nodel << " " << CAP_GROUND << " " << C1_FINAL << std::endl;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

202

File Documentation

00961
00962
00963
00964
01013
01014
01015
01016
01017
01018
01019
01020
01021
01022
01023
01024
01025
01026
01027
01028
01029
01030
01031
01032
01033
01034
01035
01036
01037
01038
01039
01040
01041
01042
01043
01044
01045
01046
01047
01048
01049
01050
01051
01052
01053
01054
01055
01056
01057
01058
01059
01060
01061
01062
01063
01064
01065
01066
01067
01068
01069
01070
01071
01072
01073
01074
01075
01076
01077

// Reset precision/format to default

outFile << std::defaultfloat << std::setprecision(6);

bool LibFile::modifySpiceNetlist(const std::string &v2lvsSpiceFile, // Input is the v2lvs output

const std::string &finalSpiceFile, // Output is the final file
const std::string &targetGlobalLine) {
logger_->info("Post-processing SPICE netlist: {} -> {}", v2lvsSpiceFile, finalSpiceFile);

std::ifstream inFile(v2lvsSpiceFile);
// Write directly to the final output file, overwriting if it exists

std::ofstream outFile(finalSpiceFile, std::ios::trunc);

if (!inFile) {
logger_->error("Could not open input v2lvs SPICE file for modification: {}", v2lvsSpiceFile);
return false;

}

if (loutFile) {
logger_->error("Could not open final output SPICE file for writing: {}", finalSpiceFile);
inFile.close(); // Close input file if output fails

return false;

// --- Add Metadata Comments —--—

outFile << "#x Generated by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;

auto now = std::chrono::system_clock::now();

std::time_t now_time_t = std::chrono::system_clock::to_time_t (now);

// Use localtime_s on Windows, localtime_r on POSIX, or std::localtime (less safe)

// std::tm now_tm;

// localtime_s(&now_tm, &now_time_t); // Example for Windows

std::tm *now_tm_ptr = std::localtime(&now_time_t); // Standard C++, potentially less thread-safe
if (now_tm_ptr) {

outFile << ". On: " << std::put_time(now_tm_ptr, "lic %Z") << " **\n" << std::endl;
} else {

outFile << ". Timestamp unavailable **\n" << std::endl;
}
// --- End Metadata ---

std::string line;

bool includeFound = false;

bool globallnserted = false;

bool inSubckt = false;

std::string previousInstancelLine = "";

int instancelndex = 0; // Counter for R/C naming within a subckt

while (std::getline(inFile, line)) {
// Trim leading/trailing whitespace
line.erase(0, line.find_first_not_of(" \t\n\r\f\v"));
line.erase(line.find_last_not_of (" \t\n\r\f\v") + 1);

// Skip empty lines and v2lvs header comments

if (line.empty() || line.find("$ Spice netlist generated by v2lvs") == 0 ||
line.find("$ v2") == 0 || // Catch version line too
line.find("*.BUSDELIMITER") == 0) {

continue; // Skip these lines entirely

// VWrite other comments directly after processing any pending instance
if (line[0] == 'x') {
// Process previous instance before writing comment if needed
if (!previousInstanceLine.empty()) {
std::vector<std::string> tokens = this->splitString(previousInstanceLine);
if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
std::string moduleName = tokens.back();
std::string outputNet = tokens[tokens.size() - 2]; // Assumption
bool isFinal = (outputNet == "C0" || outputNet == "S" || outputNet == "ZN");
tokens [tokens.size() - 2] = outputNet + ":1"; // Modify output pin

// Reconstruct line with correct VDD/VSS order

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 203

01078 for (size_t i = 0; i < tokens.size() - 1; ++i) { // Up to module name

01079 outFile << tokens[i] << " ";

01080 }

01081 outFile << "VDD VSS " << moduleName << std::endl; // Insert VDD VSS before module name
01082

01083 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01084 } else {

01085 logger_->warn("Previous line stored but not recognized as instance: {}",
01086 previousInstanceLine) ;

01087 outFile << previousInstancelLine << std::endl;

01088 }

01089 previousInstanceline = ""; // Clear after processing

01090 }

01091 outFile << line << std::endl; // Write the comment line

01092 continue;

01093 }

01094

01095 // Handle .INCLUDE

01096 if (line.find(".INCLUDE") == 0) {

01097 outFile << line << std::endl;

01098 includeFound = true;

01099 continue; // Process next line to insert global

01100 }

01101

01102 // Insert the target global line after .INCLUDE

01103 if (includeFound && !globallnserted) {

01104 outFile << targetGlobalLine << std::endl << std::endl; // Add extra newline for spacing
01105 globallnserted = true;

01106 // Fall through to process the current line

01107 }

01108

01109 // Handle .SUBCKT

01110 if (line.find(".SUBCKT") == |l line.find(".subckt") == 0) { // Handle case-insensitivity
01111 if (!previousInstanceLine.empty()) {

01112 std::vector<std::string> tokens = this->splitString(previousInstanceLine);
01113 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
01114 std::string moduleName = tokens.back();

01115 std::string outputNet = tokens[tokens.size() - 2];

01116 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");
01117 tokens [tokens.size() - 2] = outputNet + ":1";

01118

01119 for (size_t i = 0; i < tokens.size() - 1; ++i) {

01120 outFile << tokens[i] << " ";

01121 }

01122 outFile << "VDD VSS " << moduleName << std::endl;

01123

01124 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01125 } else {

01126 logger_->warn("Previous line stored but not recognized as instance: {}",
01127 previousInstanceLine) ;

01128 outFile << previousInstanceline << std::endl;

01129 }

01130 previousInstanceLine = "";

01131 }

01132

01133 inSubckt = true;

01134 instancelndex = 0; // Reset R/C counter for new subcircuit
01135 outFile << line << " VDD VSS" << std::endl; // Add VDD VSS to ports

01136 }

01137 // Handle .ENDS

01138 else if (line.find(".ENDS") == Il line.find(".ends") == 0) { // Handle case-insensitivity
01139 inSubckt = false;

01140 // Process the last instance line *beforex writing .ENDS

01141 if (!previousInstancelLine.empty()) {

01142 std::vector<std::string> tokens = this->splitString(previousInstanceline);
01143 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
01144 std::string moduleName = tokens.back();

01145 std::string outputNet = tokens[tokens.size() - 2];

01146 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

204

File Documentation

01147
01148
01149
01150
01151
01152
01153
01154
01155
01156
01157
01158
01159
01160
01161
01162
01163
01164
01165
01166
01167
01168
01169
01170
01171
01172
01173
01174
01175
01176
01177
01178
01179
01180
01181
01182
01183
01184
01185
01186
01187
01188
01189
01190
01191
01192
01193
01194
01195
01196
01197
01198
01199
01200
01201
01202
01203
01204
01205
01206
01207
01208
01209
01210
01211
01212
01213
01214
01215

tokens [tokens.size() - 2] = outputNet + ":1";

for (size_t i = 0; i < tokemns.size() - 1; ++i) {
outFile << tokens[i] << " ";

¥

outFile << "VDD VSS " << moduleName << std::endl;

this->generateRCLines (outFile, outputNet, instanceIndex - 1, isFinal);

else {

"

logger_->warn("Previous line stored but not recognized as instance: {}",
previousInstanceLine);
outFile << previousInstanceline << std::endl;
}
previousInstanceline = ""; // Clear after processing
}
outFile << line << std::endl << std::endl; // Add extra newline after .ENDS
}
// Skip original .GLOBAL lines

else if (line.find(".GLOBAL") == O || line.find(".global") == 0) {
continue;

}

// Handle Instance lines

else if (inSubckt && (line[0] == 'X' || line[0] == 'x')) {

if (!previousInstanceline.empty()) {
std::vector<std::string> tokens = this->splitString(previousInstanceline);
if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
std::string moduleName = tokens.back();
std::string outputNet = tokens[tokens.size() - 2]; // Assumption
bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");
tokens [tokens.size() - 2] = outputNet + ":1"; // Modify output pin

// Reconstruct line with correct VDD/VSS order
for (size_t i = 0; i < tokens.size() - 1; ++i) { // Up to module name
outFile << tokens[i] << " ";
}
outFile << "VDD VSS " << moduleName << std::endl; // Insert VDD VSS before module name

this->generateRCLines(outFile, outputNet, instanceIndex - 1,

isFinal); // Use previous index

w

else {
logger_->warn("Previous line stored but not recognized as instance: {}",
previousInstanceLine) ;

outFile << previousInstancelLine << std::endl;

¥
previousInstanceLine = line;
instancelndex++;
}
// Handle other lines
else {
if (!previousInstancelLine.empty()) {
std::vector<std::string> tokens = this->splitString(previousInstancelLine);
if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
std::string moduleName = tokens.back();
std::string outputNet = tokens[tokens.size() - 2];
bool isFinal = (outputNet == "C0" || outputNet == "S" || outputNet == "ZN");

tokens [tokens.size() - 2] = outputNet + ":1";

for (size_t i = 0; i < tokems.size() - 1; ++i) {
outFile << tokens[i] << " ";

¥

outFile << "VDD VSS " << moduleName << std::endl;

this->generateRCLines (outFile, outputNet, instanceIndex - 1, isFinal);

} else {
logger_->warn("Previous line stored but not recognized as instance: {}",
previousInstanceLine);
outFile << previousInstanceline << std::endl;
}

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 205

01216
01217
01218
01219
01220
01221
01222
01223
01224
01225
01226
01227
01228
01229
01230
01231
01232
01233
01234
01235
01236
01237
01238
01239
01240
01241
01242
01243
01244
01245
01246
01247
01248
01249
01250
01279
01280
01281
01282
01283
01284
01285
01286
01287
01288
01289
01290
01291
01292
01293
01294
01295
01296
01297
01298
01299
01300
01301
01302
01303
01304
01305
01306
01307
01308
01309
01310
01311
01312

previousInstancelLine = ""; // Clear after processing
}
outFile << line << std::endl;

// Process the very last instance line
if (!previousInstanceLine.empty()) {
std::vector<std::string> tokens = this->splitString(previousInstanceline);
if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {
std::string moduleName = tokens.back();
std::string outputNet = tokens[tokens.size() - 2];
bool isFinal = (outputNet == "C0" || outputNet == "S" || outputNet == "ZN");
tokens[tokens.size() - 2] = outputNet + ":1";

for (size_t i = 0; i < tokens.size() - 1; ++i) {
outFile << tokens[i] << " ";

}

outFile << "VDD VSS " << moduleName << std::endl;

this->generateRCLines (outFile, outputNet, instanceIndex - 1, isFinal);

else {

-

logger_->warn("Last stored line not recognized as instance: {}", previousInstanceLine);

outFile << previousInstancelLine << std::endl;

inFile.close();

outFile.close();

// No renaming needed, we wrote directly to the final file
logger_->info("SPICE netlist post-processing successful for: {}", finalSpiceFile);

return true;

void LibFile::spice(const int chain_length, const std::vector<std::string> &cell_names,

const std::string &verilog_lib_file, const std::string &spice_lib_file) {
logger_->info("Creating SPICE for '{}'", filename_);

// 1. Generate the temporary Verilog file first

this->verilog(chain_length, cell_names);

// Define input and output filenames
std::string temp_verilog_file = basename_ + "_temp.v";
std::string v2lvs_output_spice_file = basename_ + ".v2lvs.spi"; // v2lvs output

std::string final_output_spice_file = basename_ + ".spi"; // Final processed output

// Check if temporary Verilog file exists
std::ifstream check_v_in(temp_verilog_file);
if (!check_v_in.is_open()) {
logger_->error("Temporary Verilog file {} not found or could not be opened. Verilog generation "
"might have failed.",
temp_verilog_file);
return;
}

check_v_in.close(); // Close after checking

// 2. Check if V2LVS tool is available
logger_->debug("Checking for v2lvs tool...");
std::string v2lvs_path_cmd = "which v2lvs";
std::string v2lvs_path_result;
std::array<char, 128> buffer;
std::unique_ptr<FILE, decltype(&pclose)> pipe(popen(v2lvs_path_cmd.c_str(), "r"), pclose);
if (!pipe) {
logger_->error("Failed to run command to find v2lvs: {}", v2lvs_path_cmd);
// Do NOT delete temp_verilog_file here if popen fails
return;
}
while (fgets(buffer.data(), buffer.size(), pipe.get()) != nullptr) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

206 File Documentation

01313 v2lvs_path_result += buffer.data();

01314 }

01315

01316 // Trim potential newline from the result

01317 if (!v2lvs_path_result.empty() && v2lvs_path_result.back() == '\n') {
01318 v2lvs_path_result.pop_back();

01319 }

01320

01321 if (v2lvs_path_result.empty()) {

01322 logger_->error(

01323 "V2LVS tool not found in PATH. Please install Calibre or ensure v2lvs is accessible.");
01324 // Do NOT delete temp_verilog_file

01325 return;

01326 } else {

01327 logger_->info("V2LVS tool found at: {}", v2lvs_path_result);

01328 }

01329

01330 // 3. Construct and Run V2LVS command
01331 logger_->info("Running V2LVS to generate initial SPICE netlist...");

01332 std::string v2lvs_cmd_full = "v2lvs"; // Start with the command name

01333 v2lvs_cmd_full += " -v " + temp_verilog_file; // Input Verilog

01334 v2lvs_cmd_full += " -o " + v2lvs_output_spice_file; // Output SPICE

01335 v2lvs_cmd_full += " -s0 VSS"; // Default ground net, generates .GLOBAL VSS
01336 v2lvs_cmd_full += " -s1 VDD"; // Default power net, generates .GLOBAL VDD
01337 v2lvs_cmd_full += " -i"; // Use positional pins (traditional SPICE)
01338 v2lvs_cmd_full += " -1 " + verilog_lib_file; // Verilog library for pin order

01339 v2lvs_cmd_full += " -s " + spice_lib_file; // SPICE library to include

01340

01341 logger_->debug("Executing V2LVS command: {}", v2lvs_cmd_full);
01342 int ret = system(v2lvs_cmd_full.c_str());

01343

01344 // Do NOT delete temp_verilog_file

01345

01346 if (ret !=0) {

01347 logger_->error("V2LVS command failed with exit code: {}. Command: {}", ret, v2lvs_cmd_full);
01348 // Attempt to remove potentially incomplete v2lvs output SPICE file

01349 std: :remove (v21lvs_output_spice_file.c_str());

01350 return;

01351 }

01352 logger_->info("V2LVS completed successfully, output at '{}'.", v2lvs_output_spice_file);
01353

01354 // 4. Post-process the generated SPICE file

01355 std::string target_global = ".global VSS GND COREGND1 VDD COREVDD1";

01356

01357 // Call the modification function, reading from .v2lvs.spi and writing to .spi

01358 if (!this->modifySpiceNetlist(v2lvs_output_spice_file, final_output_spice_file, target_global)) {

01359 logger_->error("Failed to post-process the generated SPICE netlist: {}",
01360 v21lvs_output_spice_file);

01361 // Keep both files for debugging if modification fails

01362 return;

01363 }

01364

01365 // 5. Final success message

01366 logger_->info("Intermediate v2lvs output kept in '{}'", v2lvs_output_spice_file);
01367 logger_->info("Temporary Verilog input kept in '{}'", temp_verilog_file);

01368 logger_->info("SPICE generation and post-processing complete. Final output in '{}'",
01369 final_output_spice_file);

01370 }

01371

01392 std::map<std::string, std::string> LibFile::logic(const std::string &cell_name) {
01393 std::map<std::string, std::string> logic_map = {};

01394

01395 logger_->info("Getting output pin logic function for '{}'", filename_);
01396

01397 if (!std::filesystem::exists(jsonname_)) {

01398 logger_->info("JSON file not found. Parsing Liberty file first.");
01399 this->parse();

01400 this->writeJsonToFile();

01401 } else {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference

207

01402
01403
01404
01405
01406
01407
01408
01409
01410
01411
01412
01413
01414
01415
01416
01417
01418
01419
01420
01421
01422
01423
01424
01425
01426
01427
01428
01429
01430
01431
01432
01433
01434
01435
01436
01437
01438
01439
01440
01441
01442
01443
01444
01445
01446
01447
01448
01449 }

// Read the JSON file into json object

std::ifstream in(jsonname_);

if (lin.is_open()) {
logger_->error("Could not open file '{}' for reading", jsonname_);
return logic_map;

}

try {
1lib_json_ = json::parse(in);

} catch (const json::parse_error &e) {
logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());
in.close();
return logic_map;

}

in.close();

// Check if the cell name exists in the JSON object
for (const auto &cell : lib_json_["cells"]) {
if (cell["cell_name"].get<std::string>() == cell_name) {
logger_->debug("Found cell: '{}'", cell_name);

// Tranverse all output pins
if (cell.contains("output_pins")) {
for (const auto &pin : cell["output_pins"]) {
std::string pin_name = pin["pin_name"].get<std::string>();
// Check if the pin has a "timing_arcs" attribute
if (pin.contains("function")) {
std::string function = pin["function"].get<std::string>();
logic_map[pin_name] = function;
logger_->debug("Pin: '{}' Logic Function: '{}'", pin_name, function);
} else {

logger_->warn("Pin: '{}' does not have a 'function' attribute", pin_name);

}
if (logic_map.empty()) {
logger_->warn("No logic functions found for cell: '{}'", cell_name);
} else {
logger_->info("Found {} Logic functions for cell: '{}'", logic_map.size(), cell_name);
// Print the logic functions
for (const auto &pair : logic_map) {

logger_->info("Pin -> Logic Function: {} -> {}", pair.first, pair.second);

}

return logic_map;

7.33 src/LibFileOperations.cpp File Reference

#include "LibFileOperations.hpp"

Include dependency graph for LibFileOperations.cpp:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

208

File Documentation

Functions

void printInfo ()

Sets up and configures the global logger and prints application information.
void parseLibFile (const std::string &library_path, const std::string log_file_name)

Parses a library file and generates corresponding output.
void monoCheckLibFile (const std::string &library_path, const std::string log_file_name, bool is«
_slew)

Performs monotonicity check on a library file.
void supercellLibFile (const std::string &library_path, const std::string &log_ file_name, int chain—
_length, const std::vector< std::string > &cell_names)

Creates supercell map structures from a Liberty library file.
void verilogLibFile (const std::string &library_path, const std::string &log_file_name, int chain«
_length, const std::vector< std::string > &cell_names)

Generates Verilog files from a library file for specified cells.
void spiceLibFile (const std::string &library_path, const std::string &log_file_name, int chain—
_length, const std::vector< std::string > &cell_names, const std::string &verilog_lib_file, const
std::string &spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.
void compareLibFiles (const std::string &ref_lib, const std::string &comp_lib, const double reltol,
const double abstol, std::string &report_file_name)

Compares two library files and generates a detailed comparison report.
void funcLibFile (const std::string &ref_file, const std::string &comp_file, const std::vector< std«
::string > &cell_names, std::string &report_file_name)

Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

7.33.1 Function Documentation

7.33.1.1 compareLibFiles()

void compareLibFiles (

const std::string & ref_l1ibd,
const std::string & comp_l1b,
const double reltol,
const double abstol,

std: :string & report_file_name)

Compares two library files and generates a detailed comparison report.

This function compares a reference library file with another library file, performing validation checks

based on specified tolerance parameters. The comparison results are written to a report file in markdown

or text format.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 209

Parameters
ref_lib Path to the reference library file to use as the baseline
comp__lib Path to the library file to compare against the reference
reltol Relative tolerance for numerical comparisons (must be >= 0.0)
abstol Absolute tolerance for numerical comparisons

report_file_name | [in,out] Name of the file to write the comparison report to. If empty, defaults to

[comp_lib_basename].cmp.md. If provided but doesn't end with .txt or .md,

.md will be appended.

Note
The function will log an error and return without comparing if reltol is invalid.
Log files will be created with the naming pattern [library_basename].cmp.log
The function uses the LibraryComparator class to perform the actual comparison.

Definition at line 249 of file LibFileOperations.cpp.

Here is the call graph for this function:

["Libraryc ["Libraryc - ["LibraryComparator:: ["Libraryc ["Libraryc :
compareLibFiles | generateReport ‘ | comparecell | comparePin | compareTimingarc | compareLut

Here is the caller graph for this function:

main compareLibFiles

7.33.1.2 funclLibFile()

void funcLibFile (
const std::string & ref_file,

const std::string & comp_file,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

210 File Documentation

const std::vector< std::string > & cell_names,

std::string & report_file_name)
Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

This function compares the logic functions of specified cells in two files, which can be either in Liberty
(.lib) or Verilog (.v) format. It extracts the logic functions for each cell from both files, compares them,

and generates a report summarizing the comparison results.

Parameters
ref_file The path to the reference file (Liberty or Verilog).
comp__file The path to the comparison file (Liberty or Verilog).
cell_names A vector of cell names to be checked for functional equivalence.

report_file_name | A string to store the name of the report file. If empty, a default name is

generated. If the provided name does not end with ".txt” or ".md", ".md" is

appended.

The function first checks the file extensions to determine the file format. It then extracts the logic
functions for each specified cell from both files. The logic functions are then compared, and a report
is generated, which includes the comparison results for each cell. The report is written to the specified

report file.

Note

If no cell names are provided, the function logs an error and returns.

= If the reference or comparison file format is not supported (i.e., not .lib or .v), the function

logs an error and returns.
= The report file is cleared before writing the comparison results.
= The function uses spdlog for logging information, warnings, and errors.

= The function utilizes the LogicComparator class to perform the logic comparison and generate

the report.

= Memory allocated for LibFile objects is managed using raw pointers and must be manually

deallocated to prevent memory leaks.

Definition at line 308 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 211

Here is the call graph for this function:

Togiece
Celliogic
4

(o] | R | [P | [

[oaicComparator:generate
[[fonctibre | Report
LogicComparator:iogic UbAttribute: getint
[ubriesread |

LibFile:logic » LibFile:parse |- :“)
[[Uie-wrresororie |

roupsiterator:iend ‘Attributesiterator:end

T
|
r — A
| 7 oo ||
) / [senerateTimingison | /[generateLutson |

)
[oenerteceiison | »[GEnertepiyson | - * Cowmeetves
T > (o
| \ ~ N\ Tk

|

X

;

]

I — N\ - l
) \ Euwinum getsung | |\ [UbGrouprgettrs
‘ \ o[Ubswnegeront |) 1\

\ A 7

1

| [onriose:getome |

- ‘Attributesterator
next

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

212 File Documentation

7.33.1.3 monoCheckLibFile()

void monoCheckLibFile (
const std::string & library_path,
const std::string log_file_name,

bool is_slew)
Performs monotonicity check on a library file.

This function validates the monotonicity of timing data in a library file. It creates a log file to record the

results of the check and handles any exceptions that occur during the process.

Parameters

library__path Path to the library file to check

log_file_name | Name of the log file to create (optional). If empty, a default name will be

generated from the library file name

is_slew Flag indicating whether to check input slew monotonicity (true) or output load

monotonicity (false)

Exceptions

‘ The ‘ function catches and logs any exceptions but does not rethrow them

Definition at line 81 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference

213

Here is the call graph for this function:

/ V4 \ ﬁ\‘

UibAttribute: getFloat

/ B K] Y
/S /A | [Aurbutestertor-end
yay) - { | Growpsertoriget \/v

I/ /
A=

[[omergenn |

/

Vi

/

1f
J
|

\ NN
| AN
[N\

Il
|| [generatecelison
N —

[UibAttribute:getvalues
\ Valuesiterator:next

\
I : .
1
|
|
Libfile::checkTimingArcMonotonicity | /// N\ N o
S AN .
Ubfilezmono - \
LibFile::writeJsonToFile o

\

LibFile:read

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

214 File Documentation

7.33.1.4 parseLibFile()

void parseLibFile (
const std::string & library_path,

const std::string log_file_name)
Parses a library file and generates corresponding output.

This function processes the given library file, parsing its contents and generating a JSON output. It also

logs the parsing process to a specified log file or creates a default log file if none is provided.

Parameters

library__path Path to the library file that needs to be parsed

log_file_name | Optional name for the log file. If empty, a default name is generated based on the

library filename with ".parse.log” extension

Exceptions

‘ The ‘ function catches and logs any exceptions but doesn't propagate them

Definition at line 49 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 215

Here is the call graph for this function:

| [[Attributesiterator:end

\
\
\
7

/[parsestringTovector

/-
Valueslterator::end

LibAttribute::getValues

—

\
[Valuesiterator:next
\

LibAttribute::getName

\. R

\ [LibAttribute:igetint
LibFile:read

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

216 File Documentation

7.33.1.5 printinfo()

void printInfo ()
Sets up and configures the global logger and prints application information.

This function performs the following operations:

1. Creates a console sink for logging with level set to INFO

2. Creates a file sink for logging with level set to TRACE, saving to [APP_NAME].log
3. Configures a logger with both sinks and sets it as the default logger

4. Outputs basic application information:

= Version and build timestamp
= Author information

= Log file location

Note

Uses spdlog library for logging functionality

Depends on APP_NAME, APP_VERSION, BUILD_TIMESTAMP, APP_AUTHOR, and APP«
__CONTACT macros

Definition at line 18 of file LibFileOperations.cpp.

Here is the caller graph for this function:

main printinfo

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference

217

7.33.1.6 spiceLibFile()

void spiceLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names,

const std::string & wverilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

This function takes a library file path, a log file name, a chain length, a vector of cell names, a Verilog

library file path, and a SPICE library file path as input. It initializes a LibFile object, validates the chain

length, and then calls the spice method of the LibFile object to generate the SPICE library file. It logs

the start and end of the SPICE generation process, as well as any errors that occur.

Parameters

library_path

The path to the input library file.

log_file_name

The name of the log file. If empty, a default log file name is generated based on

the library file name.

chain__length

The chain length to use during SPICE generation. Must be >= 1.

cell_names

A vector of cell names to include in the SPICE generation.

verilog_lib_file

The path to the Verilog library file.

spice_lib_file

The path to the output SPICE library file.

Definition at line 202 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

File Documentation

218

Here is the call graph for this function:

K [Comstarorand
o
,/
Yy / g LibGroup: getAttrs

Y

| \
\ N
|

|

Liﬁ

o hmmm

|
|
%
UbAttibute: getsting e etoret

[Ubriespsiing | I
[modtySpcaNeiie | —»{ UbFi-penerateRCines | |
[Dofiesporse |

[ey
*{Gorievaros | [Gortessupeee |
* T Ubkie:witejsonTofile. \

v

Here is the caller graph for this function:

7.33.1.7 supercellLibFile()

void supercellLibFile (

const std::string & library_path,

const std::string & log_file_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 219

int chain_length,

const std::vector< std::string > & cell_names)
Creates supercell map structures from a Liberty library file.

This function reads a Liberty file, creates supercell structures based on the specified chain length and

cell names, and logs the process to a file.

Parameters

library__path Path to the Liberty file to process

log_file_name | Name of the log file (if empty, defaults to "[library_name].supercell.log™)

chain_length | The length of chains to create (must be >= 1)

cell_names Vector of cell names to process for supercell generation

Exceptions

‘ May ‘ pass through exceptions from the LibFile::supercell method

Note

The function validates the chain length and logs all activities including errors that might occur

during processing

Definition at line 116 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

220 File Documentation

Here is the call graph for this function:

/
LibAttribute::getValues

L
[generatepowerison
— b

oy R e |

Ny

‘Attributesiterator
“next

Attributesiterator:iget

, [brilesparse |-
LibFile:supercell |
UbFile:writeJsonTorile

. R
[LibAttrbute:getint

Here is the caller graph for this function:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 221

7.33.1.8 verilogLibFile()

void verilogLibFile (
const std::string & library_path,
const std::string & log_file_name,
int chain_length,

const std::vector< std::string > & cell_names)
Generates Verilog files from a library file for specified cells.

This function processes a library file and generates Verilog representation for the specified cell names

with a given chain length. The operation results are logged to a specified or default log file.

Parameters

library_path Path to the library file to process

log_file_name | Name for the log file (if empty, a default name will be generated)

chain_length Number of cells to chain together, must be >=1

cell_names Vector of cell names to generate Verilog for

Exceptions

‘ Catches ‘ any exceptions from the verilog generation process and logs them

Definition at line 157 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

222 File Documentation

Here is the call graph for this function:

\
Ubatributesgetrioat |) [Groupsteratorse a
) i Attributesiteratorsend
/ \/ \
Groupsiterator:get \
A \/

\
I/ LibGroup::getType
[:I4
|
N, T
/. 2)
) z [Feiseiormiorni |

[senerssroverson |/ generatetunson |
[oereoetaives
[Vluesteratarnext |

\

\ //
X
.
Aetibutesherator
noxt
o[UbAtribute: getstring A

‘
1
x
|/

[FERRE], | i verion || iiesuperet |
*[Gorieaaroris
\«

|
|
| LibAttribute:getName
4

LibAttribute:getint
Ubfilezread

Here is the caller graph for this function:

7.34 LibFileOperations.cpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.34 LibFileOperations.cpp 223

00001 #include "LibFileOperations.hpp"

00002
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128

void printInfo() {

// Set Global Logger

auto console_sink = std::make_shared<spdlog::sinks::stdout_color_sink_mt>();
console_sink->set_level(spdlog::level::info);

std::string app_name = APP_NAME;

auto file_sink = std::make_shared<spdlog::sinks::basic_file_sink_mt>(app_name + ".log", true);

file_sink->set_level(spdlog::level::trace);

std::vector<spdlog::sink_ptr> sinks{console_sink, file_sink};

auto logger = std::make_shared<spdlog::logger>(APP_NAME, sinks.begin(), sinks.end());
logger->set_level(spdlog::level::trace);

spdlog: :set_default_logger(logger);

spdlog::info("Version {}, Built: {}", APP_VERSION, BUILD_TIMESTAMP);
spdlog::info("Author: {3}, Email: {}", APP_AUTHOR, APP_CONTACT);
spdlog: :info("Global log file in: '{}'", app_name + ".log");

void parseLibFile(const std::string &library_path, const std::string log_file_name) {

std::string logname = log_file_name.empty()
? std::filesystem::path(library_path).stem().string() + ".parse.log"
: log_file_name;

LibFile libfile(library_path, logname);

libfile.logger_->info("Starting parse for file: '{}' ...", library_path);

try {

libfile.parse();

libfile.writeJsonToFile();

libfile.logger_->info("Successfully parsed file: '{}'", library_path);
} catch (const std::exception &e) {

libfile.logger_->error("Error parsing file '{}': {}", library_path, e.what());

void monoCheckLibFile(const std::string &library_path, const std::string log_file_name,

bool is_slew) {
std::string logname = log_file_name.empty()
? std::filesystem::path(library_path).stem().string() + ".mono.log"
: log_file_name;

LibFile libfile(library_path, logname);

libfile.logger_->info("Starting monotonicity check for file: '{}', input slew: {}", library_path,

is_slew);

try {
libfile.mono(is_slew);
libfile.logger_->info("Successfully completed monotonicity check for file: '{}'", library_path);
} catch (const std::exception &e) {
libfile.logger_->error ("Error during monotonicity check for file '{}': {}", library_path,
e.what());

void supercellLibFile(const std::string &library_path, const std::string &log_file_name,

int chain_length, const std::vector<std::string> &cell_names) {
std::string logname = log_file_name.empty()
7 std::filesystem::path(library_path).stem().string() + ".supercell.log"
: log_file_name;

LibFile libfile(library_path, logname);

// Check chain length validity

if (chain_length < 1) {
libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);
return;

}

std::stringstream ss;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

224 File Documentation

00129 for (const auto &cell : cell_names) {

00130 ss << cell << ", "5

00131}

00132 libfile.logger_->info("Starting supercell generation for file: '{}', chain length: {}, cells: {}",
00133 library_path, chain_length, ss.str());

00134 try {

00135 libfile.supercell(chain_length, cell_names);

00136 libfile.logger_->info("Successfully generated supercells for file: '{}'", library_path);

00137 } catch (const std::exception &e) {

00138 libfile.logger_->error("Error during supercell generation for file '{}': {}", library_path,
00139 e.what());

00140 }

00141 }

00142

00157 void verilogLibFile(const std::string &library_path, const std::string &log_file_name,

00158 int chain_length, const std::vector<std::string> &cell_names) {

00159 std::string logname = log_file_name.empty()

00160 ? std::filesystem::path(library_path).stem().string() + ".verilog.log"
00161 : log_file_name;

00162 LibFile libfile(library_path, logname);

00163

00164 // Check chain length validity
00165 if (chain_length < 1) {

00166 libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);
00167 return;
00168 }

00169 std::stringstream ss;
00170 for (const auto &cell : cell_names) {

00171 ss << cell << ", "

00172 }

00173 libfile.logger_->info("Starting Verilog generation for file: '{}', chain length: {}, cells: {}",
00174 library_path, chain_length, ss.str());

00175 try {

00176 libfile.verilog(chain_length, cell_names);

00177 libfile.logger_->info("Successfully generated Verilog for file: '{}'", library_path);
00178 } catch (const std::exception &e) {

00179 libfile.logger_->error("Error during Verilog generation for file '{}': {}", library_path,
00180 e.what());

00181 }

00182 }

00183

00202 void spiceLibFile(const std::string &library_path, const std::string &log_file_name,

00203 int chain_length, const std::vector<std::string> &cell_names,

00204 const std::string &verilog_lib_file, const std::string &spice_lib_file) {
00205 std::string logname = log_file_name.empty()

00206 ? std::filesystem::path(library_path).stem().string() + ".spice.log"
00207 : log_file_name;

00208 LibFile libfile(library_path, logname);

00209

00210 // Check chain length validity
00211 if (chain_length < 1) {

00212 libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);
00213 return;
00214 }

00215 std::stringstream ss;
00216 for (const auto &cell : cell_names) {

00217 ss << cell << ", "

00218 }

00219 libfile.logger_->info("Starting SPICE generation for file: '{}', chain length: {}, cells: {}"
00220 library_path, chain_length, ss.str());

00221 try {

00222 libfile.spice(chain_length, cell_names, verilog_lib_file, spice_lib_file);

00223 libfile.logger_->info("Successfully generated SPICE for file: '{}'", library_path);
00224 } catch (const std::exception &e) {

00225 libfile.logger_->error ("Error during SPICE generation for file '{}': {}", library_path,
00226 e.what());

00227 }

00228 }

00229

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.34 LibFileOperations.cpp

225

00249 void compareLibFiles(const std::string &ref_lib, const std::string &comp_lib, const double reltol,

00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348

const double abstol, std::string &report_file_name) {
std::string ref_logname = std::filesystem::path(ref_lib).stem().string() + ".cmp.log";
std::string comp_logname = std::filesystem::path(comp_lib).stem().string() + ".cmp.log";
LibFile ref_libfile(ref_lib, ref_logname), comp_libfile(comp_lib, comp_logname);

// Check relative tolerance validity
if (reltol < 0.0) {
spdlog: :error("Invalid relative tolerance: {}. Relative tolerance must be >= 0.0.", reltol);

return;

// Check the report file name
if (report_file_name.empty()) {
report_file_name = comp_libfile.basename_ + ".cmp.md";
} else if (std::filesystem::path(report_file_name).extension() != ".txt" &&
std::filesystem: :path(report_file_name).extension() != ".md") {
// report file name not end in .txt or .md, warn user and append .md
report_file_name = report_file_name + ".md";
spdlog: :warn("Report file name does not end in .txt or .md. Report will be written to '{}'",

report_file_name);

LibraryComparator comparator(ref_libfile, comp_libfile, reltol, abstol);
comparator.generateReport (report_file_name) ;

spdlog: :info("Comparison completed. Report written to: '{}'", report_file_name);

void funcLibFile(const std::string &ref_file, const std::string &comp_file,
const std::vector<std::string> &cell_names, std::string &report_file_name) {
// Check if the files are Liberty or Verilog
std::string ref_ext = std::filesystem::path(ref_file).extension();

std::string comp_ext = std::filesystem::path(comp_file).extension();
std::string ref_logname = std::filesystem::path(ref_file).stem().string() + ".cmp.log";
std::string comp_logname = std::filesystem::path(comp_file).stem().string() + ".cmp.log";

// Pre cell names check
if (cell_names.empty()) {
spdlog: :error("No cell names provided for functional equivalence check.");

return;

// Check the report file name
if (report_file_name.empty()) {
report_file_name = std::filesystem::path(comp_file).stem().string() + ".logic.cmp.md";
} else if (std::filesystem::path(report_file_name).extension() != ".txt" &&
std::filesystem: :path(report_file_name).extension() != ".md") {
// report file name not end in .txt or .md, warn user and append .md
report_file_name = report_file_name + ".md";
spdlog: :warn("Report file name does not end in .txt or .md. Report will be written to '{}'",

report_file_name);

// Clear the report file

std::ofstream report_file(report_file_name);

if (lreport_file.is_open()) {
spdlog: :error("Failed to open report file: '{}'", report_file_name);
return;

}

report_file.close();

spdlog: :info("Report file cleared: '{}'", report_file_name);

// Declare LibFile objects as pointers, initialized to nullptr
LibFile *ref_libfile = nullptr;
LibFile *comp_libfile = nullptr;

// Check the reference file extension
if (ref_ext == ".v") {

spdlog::info("Reference file in Verilog format.");

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

226

File Documentation

00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417

-

}

else if (ref_ext == ".1lib") {

spdlog::info("Reference file in Liberty format.");

ref_libfile = new LibFile(ref_file, ref_logname);

else {

spdlog: :error ("Unsupported reference file format: '{}'", ref_ext);

return;

// Check the comparison file extension

if (comp_ext == ".v") {

—

spdlog::info("Comparison file in Verilog format.");

else if (comp_ext == ".1ib") {

spdlog::info("Comparison file in Liberty format.");

comp_libfile = new LibFile(comp_file, comp_logname);

else {

spdlog: :error ("Unsupported comparison file format: '{}'", comp_ext);

return;

// Tranverse the cell names and check functional equivalence

for (const auto &cell : cell_names) {

spdlog: :info("Checking functional equivalence for cell: '{}'", cell);
std::map<std::string, std::string> ref_outpin_map;

std: :map<std::string, std::string> comp_outpin_map;

if (ref_ext == ".v") {

ref_outpin_map = extractLogicFromVerilog(ref_file, cell);

} else if (ref_ext == ".1lib") {
ref_outpin_map = ref_libfile->logic(cell);

}

if (comp_ext == ".v") {

// getAST(comp_file, cell);
// extractAndPrintNetlistInfo(comp_file, cell);

comp_outpin_map = extractLogicFromVerilog(comp_file, cell);

-

else if (comp_ext == ".1ib") {

comp_outpin_map = comp_libfile->logic(cell);

spdlog::info("Logic function expressions collected for cell: '{}'", cell);

spdlog::info("Starting logic comparison ...");

LogicComparator comparator(ref_outpin_map, comp_outpin_map, cell);
// Easter egg
if (cell == "easteregg") {
spdlog::info("Easter egg found! Running ExprTk Eample 07...");
comparator.logic();

return;

// // Test for preprocessing

// std::string ref_expr;

// std::string comp_expr;

// for (const auto &pin : ref_outpin_map) {

// spdlog::info("Pin -> Expression: {} -> {}", pin.first, pin.second);
// ref_expr = comparator.preprocessExpression(pin.second);

//}

// for (const auto &pin : comp_outpin_map) {

// spdlog::info("Pin => Expression: {} => {}", pin.first, pin.second);
// comp_expr = comparator.preprocessExpression(pin.second);

//}

// std::vector<std::string> sorted_vars;

// comparator.extractVariables(ref_expr, comp_expr, sorted_vars);

// struct PinComparisonResult pin_comparison_result;

// // comp_expr = "not ((not(Al) and not(A2)) or B)";

// comparator.compareSingleExpressionPair(ref_expr, comp_expr, sorted_vars,

// pin_comparison_result);

// comparator.compareCellLogic();

comparator. compareCellLogic();

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.35 src/LibGroup.cpp File Reference

227

00418
00419
00420
00421
00422
00423
00424

comparator.generateReport (report_file_name);

spdlog: :info("Functional equivalence check completed for cell: '{}'", cell);
}
spdlog: :info("Functional equivalence check completed for all cells,");

spdlog: :info("Report written to: '{}'", report_file_name);

7.35 src/LibGroup.cpp File Reference

#include "LibGroup.hpp"

Include dependency graph for LibGroup.cpp:

src/LibGroup.cpp

LibGroup.hpp

string si2dr_liberty.h

7.36 LibGroup.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

#include "LibGroup.hpp"
LibGroup: :LibGroup(si2drGroupIdT group, si2drErrorT &err) : group_(group), err_(err) {}
LibGroup: : ~LibGroup() {}
std::string LibGroup::getName() {
si2drNamesIdT names = si2drGroupGetNames(group_, &err_);
si2drStringT name = si2drIterNextName(names, &err_);

si2drIterQuit(names, &err_);

return name ? std::string(name) : std::string();

std::string LibGroup::getType() {
si2drStringT type = si2drGroupGetGroupType(group_, &err_);
return type ? std::string(type) : std::string();

si2drAttrsIdT LibGroup::getAttrs() { return si2drGroupGetAttrs(group_, &err_); }

si2drGroupsIdT LibGroup::getGroups() { return si2drGroupGetGroups(group_, &err_); }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

228 File Documentation

7.37 src/LibraryComparator.cpp File Reference

#include "LibraryComparator.hpp"
Include dependency graph for LibraryComparator.cpp:

sy

UbroryComparatores |

["Gbfilerop tabulatefable.hpp | | tabulateimarkdown_exporterhpp

oo | [esystem [vertog wishos G Cisonaitop | vesionh

forears | onordored st || nordorsd o Spdogipaen [eotorsion | ehmannison oo

[Goumivn | [Tokmbmeres |

sting Si2dr libertyh

7.38 LibraryComparator.cpp

Go to the documentation of this file.
00001 #include "LibraryComparator.hpp"

00002

00021 LibraryComparator::LibraryComparator(LibFile &ref_libfile, LibFile &comp_libfile, double reltol,
00022 double abstol)

00023 : reltol_(reltol), abstol_(abstol) {

00024 std::string ref_json_name = ref_libfile.basename_ + ".json";

00025 if (!std::filesystem::exists(ref_json_name)) {

00026 spdlog::info("Reference JSON file {} not found. Parsing first.", ref_json_name);
00027 ref_libfile.parse();

00028 ref_libfile.writeJsonToFile();

00029 ref_json_ = ref_libfile.lib_json_;

00030 } else {

00031 // Read the JSON file into json object

00032 std::ifstream ref_in(ref_json_name);

00033 if (lref_in.is_open()) {

00034 spdlog: :error("Could not open file '{}' for reading", ref_json_name);

00035 return;

00036 }

00037 try {

00038 ref_json_ = json::parse(ref_in);

00039 } catch (const json::parse_error &e) {

00040 spdlog: :error ("Error parsing reference JSON file '{}': {}", ref_json_name, e.what());
00041 return;

00042 }

00043 }

00044 std::string comp_json_name = comp_libfile.basename_ + ".json";

00045 if (!std::filesystem::exists(comp_json_name)) {

00046 spdlog: :info("Comparison JSON file {} not found. Parsing first.", comp_json_name);
00047 comp_libfile.parse();

00048 comp_libfile.writeJsonToFile();

00049 comp_json_ = comp_libfile.lib_json_;

00050 } else {

00051 // Read the JSON file into json object

00052 std::ifstream comp_in(comp_json_name) ;

00053 if (!'comp_in.is_open()) {

00054 spdlog: :error("Could not open file '{}' for reading", comp_json_name);
00055 return;

00056 }

00057 try {

00058 comp_json_ = json::parse(comp_in);

00059 } catch (const json::parse_error &e) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.38 LibraryComparator.cpp

229

00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156

spdlog: :error ("Error parsing comparison JSON file '{}': {}", comp_json_name, e.what());

return;

ref_lib_path_ = ref_libfile.filepath_;
comp_lib_path_ = comp_libfile.filepath_;
spdlog: :info("Successfully loaded JSON files for comparison");

void LibraryComparator::compareLut(const std::string &cell_name, const std::string &pin_name,

const std::string &timing_type, const std::string &related_pin,

const std::string &arc_name, const json &ref_lut,
const json &comp_lut, Table &table) {
spdlog: :info("Comparing LUT of '{}' ...", arc_name);
std::vector<double> ref_index_1 = ref_lut["index_1"].get<std::vector<double>>();
std::vector<double> ref_index_2 = ref_lut["index_2"].get<std::vector<double>>();
std::vector<double> comp_index_1 = comp_lut["index_1"].get<std::vector<double>>();
std::vector<double> comp_index_2 = comp_lut["index_2"].get<std::vector<double>>();

if (ref_index_1 !'= comp_index_1 || ref_index_2 != comp_index_2) {

spdlog: :warn("Mismatch in LUT indices for '{}' in cell: '{}', pin: '{}', related_pin: '{}',

"timing_type: '{}'",
arc_name, cell_name, pin_name, related_pin, timing_type);
return;
} else {
spdlog: :debug ("LUT indices match for '{}'", arc_name);

std::vector<std::vector<double>> comp_value_matrix;
// Generate a matrix of values from the JSON array for comparison library
for (const auto &row_val : comp_lut["values"]) {
std::vector<double> row_data;
// Check if the row value is an array
if ('row_val.is_array()) {
spdlog: :error(
"Invalid LUT format: '{}' values should be an array of arrays in comp_lib '{}', "
"cell '{}', pin '{}', "
"related_pin '{}', timing_type '{}'",

arc_name, this->comp_lib_path_.string(), cell_name, pin_name, related_pin, timing_type);

return;
¥
// Check if non-numeric values
for (const auto &val : row_val) {
if (val.is_number()) {
row_data.push_back(val.get<double>());
} else {

spdlog: :error("Non-numeric value found in '{}'.values, skipping value: {} in comp_lib "

lll{}l’ Cell l{}|, "
"pin '{}', related_pin '{}', timing_type '{}'",

arc_name, val.dump(), this->comp_lib_path_.string(), cell_name, pin_name,

related_pin, timing_type);

return;

}
comp_value_matrix.push_back(row_data);
}
// Generate a matrix of values from the JSON array for reference library
std::vector<std::vector<double>> ref_value_matrix;
for (const auto &row_val : ref_lut["values"]) {
std::vector<double> row_data;
// Check if the row value is an array
if ('row_val.is_array()) {
spdlog: :error(
"Invalid LUT format: '{}' values should be an array of arrays in ref_lib '{}', "
"cell '{}', pin '{}', "
"related_pin '{}', timing_type '{}'",

arc_name, this->ref_lib_path_.string(), cell_name, pin_name, related_pin, timing_type);

return;
}

// Check if non-numeric values

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

230 File Documentation

00157 for (const auto &val : row_val) {

00158 if (val.is_number()) {

00159 row_data.push_back(val.get<double>());

00160 } else {

00161 spdlog: :error ("Non-numeric value found in '{}'.values, skipping value: {} in ref_lib "
00162 "r{}', cell '{}', "

00163 "pin '{}', related_pin '{}', timing_type '{}'",

00164 arc_name, val.dump(), this->ref_lib_path_.string(), cell_name, pin_name,
00165 related_pin, timing_type);

00166 return;

00167 }

00168 ¥

00169 ref_value_matrix.push_back(row_data);

00170 }

00171 // Compare the matrix for relative tolerance

00172 if (!comp_value_matrix.empty() && !comp_value_matrix[0].empty()) {

00173 for (size_t i = 0; i < comp_value_matrix.size(); ++i) {

00174 for (size_t j = 0; j < comp_value_matrix[i].size(); ++j) {

00175 double ref_val = ref_value_matrix[i][j];

00176 double comp_val = comp_value_matrix[il[j];

00177 if (std::abs(ref_val - comp_val) > reltol_ * std::abs(ref_val) &&

00178 std::abs(ref_val - comp_val) > abstol_) {

00179 spdlog: :debug("LUT value mismatch for '{}', index_1: {}, index_2: {}", arc_name,
00180 ref_index_1[i], ref_index_2[jl);

00181 table.add_row({related_pin + "->" + pin_name, std::to_string(ref_val),

00182 std::to_string(comp_val), std::to_string(comp_val - ref_val),

00183 std::to_string((comp_val - ref_val) / ref_val * 100), timing_type,
00184 arc_name, std::to_string(i + 1), std::to_string(ref_index_1[il),
00185 std::to_string(j + 1), std::to_string(ref_index_2[j1), "<"});

00186 spdlog: :debug("table size: {}", table.size());

00187 } else {

00188 spdlog: :debug("LUT value match for '{}', index_1: {}, index_2: {}", arc_name,

00189 ref_index_1[i], ref_index_2[jl);

00190 }

00191 }

00192 }

00193 } else {

00194 spdlog: :error(

00195 "Empty or invalid 'values' array found for cell: '{}', pin: '{}', related_pin: '{}', "
00196 "timing_type: '{}', arc: '{}'",

00197 cell_name, pin_name, related_pin, timing_type, arc_name);

00198 }

00199 }

00200 }

00201

00220 void LibraryComparator::compareTimingArc(const std::string &cell_name, const std::string &pin_name,
00221 const std::string &timing_type, const json &ref_timing_arc,
00222 const json &comp_timing_arc, Table &table) {

00223 spdlog::info("Comparing timing type '{}' ...", timing_type);

00224

00225 std::string related_pin = ref_timing_arc["related_pin"].get<std::string>();
00226 spdlog::debug("Related pin: '{}'", related_pin);

00227

00228 std::vector<std::string> arc_names = {"cell_rise", "cell_fall", "rise_transition",
00229 "fall_transition"};

00230 for (auto arc_name : arc_names) {

00231 if (comp_timing_arc.contains(arc_name)) {

00232 spdlog: :debug("Comparing timing arc: '{}'", arc_name);

00233 // Look for the arc in the reference JSON

00234 if (ref_timing_arc.contains(arc_name)) {

00235 // Found this arc

00236 spdlog: :debug("Found timing arc: '{}'", arc_name);

00237 compareLut (cell_name, pin_name, timing_type, related_pin, arc_name,
00238 ref_timing_arc[arc_name], comp_timing_arc[arc_name], table);
00239 } else {

00240 // arc not found in reference JSON

00241 spdlog: :warn("Timing arc: '{}' not found in reference JSON", arc_name);
00242 }

00243 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.38 LibraryComparator.cpp 231

00244
00245
00246
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356

void LibraryComparator::comparePin(const std::string &cell_name, const std::string &pin_name,

const json &ref_pin, const json &comp_pin, Table &table) {

spdlog: :info("Comparing pin '{}' ...", pin_name);

if (comp_pin.contains("timing_arcs")) {
for (const auto &comp_arc : comp_pin["timing arcs"]) {
std::string timing_type = comp_arc["timing_type"].get<std::string>();
spdlog: :debug("Comparing timing type: '{}'", timing_type);
// Look for the timing type in the reference JSON
auto ref_arc_it = std::find_if(
ref_pin["timing_arcs"].begin(), ref_pin["timing_ arcs"].end(),
[&timing_typel] (const json &ref_arc) { return ref_arc["timing_type"] == timing_type; });
if (ref_arc_it != ref_pin["timing_arcs"].end()) {
// Found this timing type
spdlog: :debug("Found timing type: '{}'", timing_type);
compareTimingArc(cell_name, pin_name, timing_type, *ref_arc_it, comp_arc, table);
} else {
// timing arc not found in reference JSON

spdlog: :warn("Timing arc: '{}' not found in reference JSON", timing_type);

}
} else {

spdlog: :info("No timing arcs found for pin: '{}'", comp_pin["pin_name"].get<std::string>());

void LibraryComparator::compareCell(const std::string &cell_name, const json &ref_cell,

const json &comp_cell, Table &table) {
spdlog: :info("Comparing cell '{}' ...", cell_name);

if (comp_cell.contains("output_pins")) {
for (const auto &comp_pin : comp_cell["output_pins"]) {
std::string pin_name = comp_pin["pin_name"].get<std::string>();
spdlog: :debug("Comparing pin: '{}'", pin_name);
// Look for the pin in the reference JSON
auto ref_pin_it = std::find_if(
ref_cell["output_pins"].begin(), ref_cell["output_pins"].end(),
[&pin_name] (const json &ref_pin) { return ref_pin["pin_name"] == pin_name; });
if (ref_pin_it != ref_cell["output_pins"].end()) {
// Found this pin
spdlog: :debug("Found pin: '{}'", pin_name);
comparePin(cell_name, pin_name, *ref_pin_it, comp_pin, table);
} else {
// pin not found in reference JSON

spdlog: :warn("Pin: '{}' not found in reference JSON", pin_name);

}
} else {
spdlog::info("No output pins found for cell: '{}'", cell_name);

void LibraryComparator::generateReport(const std::string &output_file) {

std::ofstream outfile(output_file);

outfile << "# LIBRARY comparison\n" << std::endl;

outfile << "#xReference library: " << ref_lib_path_ << “**\n" << std::endl;

outfile << "#*Comparison library: " << comp_lib_path_ << "#*\n" << std::endl;

outfile << "xxAbsolute tolerance: " << abstol_ << “**\n" << std::endl;

outfile << "xxRelative tolerance: " << reltol_ << “**\n" << std::endl;

outfile << "#*Performed by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;
auto now = std::chrono::system_clock: :now();

std::time_t now_time_t = std::chrono::system_clock::to_time_t(now);

std::tm *now_tm = std::localtime(&now_time_t);

outfile << ". on: " << std::put_time(now_tm, "/c") << "#*\n" << std::endl;

outfile << "> Legend: < outlier, * scaled, ! indices switched, ~ slews extrapolated, ~ loads "

"extrapolated,\n";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

232

File

Documentation

00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425

outfile << "> \n";

outfile << "> Legend: + padding added, /0 divide by zero, / slews interpolated, # loads "
"interpolated\n";

outfile << "> \n";

outfile << "> Legend: << value is less but unknown, >> value is more but unknown\n\n";

spdlog::info("Starting comparison report generation ...");
for (const auto &comp_cell : comp_json_["cells"]) {
std::string cell_name = comp_cell["cell_name"].get<std::string>();
spdlog: :debug("Comparing cell: '{}'", cell_name);
// Look for the cell in the reference JSON
auto ref_cell_it = std::find_if(
ref_json_["cells"].begin(), ref_json_["cells"].end(),
[&cell_name] (const json &ref_cell) { return ref_cell["cell_name"] == cell_name; });
if (ref_cell_it != ref_json_["cells"].end()) {
// Found this cell
spdlog: :debug("Found cell: '{}'", cell_name);
Table table;

table.add_row({"Pin Name", "Reference", "Comparison", "Diff", "Diff %", "Type", "Arc Name",

"Row #", "Index_1", "Col #", "Index_2", "Note"});
// Header formatting
for (size_t i = 0; i < table[0].size(); ++i) {
table[0] [i] .format () .font_color(Color::yellow) .font_style({FontStyle::bold});
¥

compareCell(cell_name, *ref_cell_it, comp_cell, table);

if (table.size() > 1) {
// Data starts from row 1, row O is header
size_t failed_count = table.size() - 1;
double sum_diff = 0.0;
double sum_diff_percent = 0.0;
size_t outlier_count = 0;
double max_diff = 0;
double max_diff_percent = 0;

std::vector<double> diff_values; // Store diff values for std deviation calculation

// Index of columns
const int diff_index = 3;
const int diff_percent_index = 4;

const int note_index = 11;

for (size_t i = 1; i < table.size(); ++i) {
try {
double diff = std::stod(table[i] [diff_index].get_text());
double diff_percent = std::stod(table[i] [diff_percent_index].get_text());

sum_diff += diff;
sum_diff_percent += diff_percent;

diff_values.push_back(diff_percent);

if (table[i] [note_index].get_text() == "<") {
outlier_count++;

}

// Change to absolute value for max diff

if (std::abs(diff) > std::abs(max_diff)) {
max_diff = diff;

max_diff_percent = diff_percent;

W

catch (const std::invalid_argument &e) {
spdlog: :error("Could not convert value to double: {}", e.what());

continue; // Skip this row if there's an error

double avg_diff = sum_diff / failed_count;

double avg_diff_percent = sum_diff_percent / failed_count;

outfile << "## " << cell_name << "\n\n";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.39 src/LogicComparator.cpp File Reference

233

00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464

00465 }

00466

outfile << "Delay Comparison in ns\n\n";
if (output_file.substr(output_file.size() - 3) == ".md") {
MarkdownExporter exporter;
auto markdown = exporter.dump(table);
outfile << markdown << std::endl;
} else {
outfile << table << std::endl;
}
outfile << std::endl;
std::cout << table << std::endl;
outfile << cell_name << " delay SUMMARY (abstol: " << abstol_ << ", reltol: " << reltol_
<< M)\n";

// Create summary table

Table summary_table;

summary_table.add_row({"Cell Name", "Data Type", "Failed Count", "Avg Diff", "Avg Diff}",
"Max Diff", "Max Diff%", "Outliers"l});

summary_table.add_row({cell_name, "delay(ns)", std::to_string(failed_count),
std::to_string(avg_diff), std::to_string(avg_diff_percent) + "J",
std::to_string(max_diff), std::to_string(max_diff_percent) + "J",

std::to_string(outlier_count)});

// Output summary table
// Use std::filesystem to reliably get the extension
std::filesystem::path file_path(output_file);
if (file_path.has_extension() && file_path.extension() == ".md") {
MarkdownExporter exporter;
auto markdown = exporter.dump(summary_table);

outfile << markdown << std::endl;

} else {
outfile << summary_table << std::endl;
}
outfile << "Worst delay outlier: Max Abs: " << max_diff << ", Max Rel: " << max_diff_percent
<< "%, Outliers: " << outlier_count << "\n\n";
}
} else {

// cell not found in reference JSON

spdlog: :warn("Cell: '{}' not found in reference JSON", cell_name);

00467 outfile.close();

00468 }

7.39

src/LogicComparator.cpp File Reference

#include "LogicComparator.hpp"

Include dependency graph for LogicComparator.cpp:

srefLogicComparator.cpp

LogicComparator.npp.

algorithm chrono cmath flesystem fomanip | | optional regex variant | | exprtkhpp _exporterhpp. h

Functions

= bool isldentifier (const std::string &token)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

234

File Documentation

Checks if a given string is a valid identifier.
= bool isOperator (const std::string &token)

Checks if a given token is a logical operator.

7.39.1 Function Documentation

7.39.1.1 isldentifier()

bool isIdentifier (

const std::string & token)
Checks if a given string is a valid identifier.

A valid identifier must:

= Not be empty.

= Consist of alphanumeric characters and underscores.

Start with an uppercase alphabetic character.

= Contain at least one alphabetic character.

Parameters

‘ token ‘ The string to check.

Returns

True if the string is a valid identifier, false otherwise.

Definition at line 74 of file LogicComparator.cpp.

Here is the caller graph for this function:

LogicComparator::extract
Variables

‘ main] } funcLibFile] Caiogrs

i isldentifier

‘ LogicComparator::compare

[LogicComparator::preprocess
Expression

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 235

7.39.1.2 isOperator()

bool isOperator (

const std::string & token)
Checks if a given token is a logical operator.

This function determines whether the input string token is one of the supported logical operators: "and”,

” noon

or”, "xor"”, or "not”.

Parameters

‘ token ‘ The string to check.

Returns

True if the token is a logical operator, false otherwise.

Definition at line 99 of file LogicComparator.cpp.

Here is the caller graph for this function:

[main l ‘[funcLibFile l

isOperator

[LogicComparator::compare [LogicComparator::preprocess
‘ CellLogic ‘ Expression

7.40 LogicComparator.cpp

Go to the documentation of this file.
00001 #include "LogicComparator.hpp"

00002

00003 LogicComparator: :LogicComparator(const std::map<std::string, std::string> &ref_outpin_map,

00004 const std::map<std::string, std::string> &comp_outpin_map,

00005 const std::string &cell_name)

00006 : ref_outpin_map_(ref_outpin_map), comp_outpin_map_(comp_outpin_map), cell_name_(cell_name) {}

00024 void LogicComparator::logic() {

00025 typedef exprtk::symbol_table<double> symbol_table_t;
00026 typedef exprtk::expression<double> expression_t;
00027 typedef exprtk::parser<double> parser_t;

00028

00029 const std::string expression_string = "not(A and B) or C";
00030

00031 symbol_table_t symbol_table;

00032 symbol_table.create_variable("A");

00033 symbol_table.create_variable("B");

00034 symbol_table.create_variable("C");

00035

00036 expression_t expression;

00037 expression.register_symbol_table(symbol_table);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

236

File Documentation

00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00099
00100
00101
00102
00103
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151

parser_t parser;

parser.compile(expression_string, expression);

printf(" # | A | B | C | %s\n"
Mmoot ——t———+-%s\n",

expression_string.c_str(), std::string(expression_string.size(), '-').c_str());

for (int i = 0; i < 8; ++i) {
symbol_table.get_variable("A")->ref() = double(i & 0x01 ? 1 : 0);
symbol_table.get_variable("B")->ref() = double(i & 0x02 7 1 : 0);
symbol_table.get_variable("C")->ref() = double(i & 0x04 7 1 : 0);

const int result = static_cast<int>(expression.value());

printf(" %d | %d | %d | %d | %d \n", i,
static_cast<int>(symbol_table.get_variable("A")->value()),
static_cast<int>(symbol_table.get_variable("B")->value()),

static_cast<int>(symbol_table.get_variable("C")->value()), result);

// --- Preprocessing Function ---

bool isIdentifier(const std::string &token) {

if (token.empty())

return false;
// Check if the token is a valid identifier (upper alpha+ numeric + underscore)
bool has_alpha = false;
for (char ¢ : token) {

if (std::isalpha(c)) {

has_alpha = true;
} else if (!std::isalnum(c) && c !'= '_') {

return false; // Contains invalid char

}
// Must start with an uppercase alphabetic character

return has_alpha && std::isupper (token[0]);

bool isOperator(const std::string &token) {

static const std::set<std::string> operators = {"and", "or", "xor", "not"};

return operators.count(token);

std::string LogicComparator::preprocessExpression(const std::string &input_expr) {

std::string processed = input_expr;

spdlog: :debug("Preprocessing raw expression: {}", processed);

// 0. Trim leading/trailing whitespace first
processed = std::regex_replace(processed, std::regex("~\\s+|\\s+$"), "");
if (processed.empty()) {

spdlog: :debug("Input expression is empty.");

return ""; // Handle empty input early

// --- Helper function: build log string ---

auto build_log_string = [](const auto &container) {
std::ostringstream oss;
for (auto it = container.begin(); it != container.end(); ++it) {

oss << *it;

if (std::next(it) != container.end()) {
oss << ", "y
}
}
return oss.str();
};
// 1. Handle '!' for NOT carefully BEFORE adding general spaces.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 237

00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220

// Replace logical NOT '!' with " not ", ensuring not to replace '!='.
std::string temp_processed;
temp_processed.reserve(processed.length() * 1.2); // Pre-allocate a bit more space

for (size_t i = 0; i < processed.length(); ++i) {

if (processed[i] == '!") {
if (1 + 1 < processed.length() && processed[i + 1] == '=') {
temp_processed += "!="; // Keep inequality operator
it+; // Skip the '='
} else {
temp_processed += " not "; // Replace logical NOT with spaced operator
}
} else {

temp_processed += processed[i];

}
processed = temp_processed;

spdlog: :trace("After '!' to 'not' conversion: {}", processed);

// 2. Add spaces around other operators and parentheses that need them
processed = std::regex_replace(processed, std::regex("\\ ("), " (");
processed = std::regex_replace(processed, std::regex("\\)"), ") ");
processed = std::regex_replace(processed, std::regex("\\+"), " + "); // OR
processed = std::regex_replace(processed, std::regex("\\~"), " ~ "); // XOR
processed = std::regex_replace(processed, std::regex("*"), " * "); // AND
// Consolidate multiple spaces into one and trim again

processed = std::regex_replace(processed, std::regex("\\s+"), " ");
processed = std::regex_replace(processed, std::regex("~\\s+|\\s+$"), "");

spdlog: :trace("After adding spaces: {}", processed);

// 3. Replace symbolic operators with their keyword equivalents

// Note: 'mot' is already handled.

processed = std::regex_replace(processed, std::regex(" \\+ "), " or ");
processed = std::regex_replace(processed, std::regex(" \\~ "), " xor ");
processed = std::regex_replace(processed, std::regex(" * "), " and ");

spdlog: :trace("After operator keyword replacement: {}", processed);

// 4. Tokenize based on spaces

std::stringstream ss(processed);

// Read tokens skipping whitespace

std::vector<std::string> tokens{std::istream_iterator<std::string>(ss),

std::istream_iterator<std::string>()};

if (tokens.empty()) {
spdlog: :debug("No tokens found after tokenization.");
return "";
}
spdlog: :trace("Tokens after initial processing: [{}]", build_log_string(tokens));

// 5. Insert implied 'and'
std::vector<std::string> tokens_with_implied_and;
if (!tokens.empty()) {
tokens_with_implied_and.push_back(tokens[0]);
for (size_t i = 0; i < tokens.size() - 1; ++i) {
const std::string ¤t_token = tokens[il;

const std::string &next_token = tokens[i + 1];

// An operand ends if it's an identifier or a closing parenthesis.

bool current_ends_operand = isIdentifier(current_token) || current_token == ")";
// An operand starts if it's an identifier, an opening parenthesis, or 'mot'.
bool next_starts_operand =

isIdentifier(next_token) || next_token == "(" || next_token == "not";

// We should insert 'and' if the current token ends an operand AND the next token starts one,
// UNLESS the current token is already an operator/opening bracket OR the next token is an
// operator/closing bracket. Explicit check: Don't insert 'and' if an operator already exists
// between them.
bool current_is_op_or_open =

isOperator(current_token) || current_token == "not" || current_token == "(";

bool next_is_op_or_close = isOperator(next_token) || next_token == "not" || next_token == ")";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

238

File Documentation

00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289

if (current_ends_operand && next_starts_operand && !current_is_op_or_open &&
'next_is_op_or_close) {
spdlog: :trace("Inserting implied 'and' between '{}' and '{}'", current_token, next_token);

tokens_with_implied_and.push_back("and");

tokens_with_implied_and.push_back(next_token); // Add the next token regardless
}
} else {
// Handle case where initial tokenization yielded no tokens

return "";

spdlog: :trace("Tokens after implied 'and': [{}]", build_log_string(tokens_with_implied_and));

// 6. Handle 'not Identifier' ONLY during reconstruction (NEW LOGIC)
std::vector<std::string> final_tokens;
for (size_t i = 0; i < tokens_with_implied_and.size(); ++i) {

const std::string ¤t_token = tokens_with_implied_and[i];

if (current_token == "not") {
// Check if the *next* token is an Identifier
if (i + 1 < tokens_with_implied_and.size() && isIdentifier(tokens_with_implied_and[i + 11)) {
// Found 'not Identifier', transform to 'not(Identifier)'’
final_tokens.push_back("not");
final_tokens.push_back("(");
final_tokens.push_back(tokens_with_implied_and[i + 1]); // The identifier
final_tokens.push_back(")");
i++; // Increment i to skip the identifier we just processed
} else {
// 'mot' is followed by '(', another operator, or is at the end.
// Add 'mot' as is, let ExprTk parse 'mot(...)' or handle errors.
final_tokens.push_back("not");
}
} else {
// Token is not 'mot', just add it to the final list

final_tokens.push_back(current_token);

}
spdlog: :trace("Tokens after 'nmot' parenthesis handling: [{}]", build_log_string(final_tokens));

// 7. Reconstruct the final expression string from tokens
std::string final_expr;
if (!final_tokens.empty()) {
final_expr = final_tokens[0];
for (size_t i = 1; i < final_tokens.size(); ++i) {
const std::string &prev = final_tokens[i - 1];

const std::string &curr = final_tokens[i];

// Add space smartly: No space after '(', no space before ')',
// no space after 'mot' if followed by '(', no space before ',' (in function args, if
// applicable)
bool add_space = true;
if (prev == "(" || curr == ")" || curr == ",") {
add_space = false;
¥
if (prev == "not" && curr == "(") {
add_space = false; // Already handled by 'mot(...)' structure
}

// Potentially add more rules if needed for other operators/functions

if (add_space) {
final_expr += " ";
¥

final_expr += curr;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp

239

00290 // 8. Final cleanup (consolidate any remaining multiple spaces and trim)

00291 final_expr = std::regex_replace(final_expr, std::regex("\\s+"), " ");

00292 final_expr = std::regex_replace(final_expr, std::regex("~\\s+|\\s+$"), "");

00293

00294 spdlog::debug("Preprocessed expression result: {}", final_expr);

00295 return final_expr;
00296 }
00297

00298 // --- Variable Extraction Helper ---—

00327 bool LogicComparator::extractVariables(const std::string &exprl_raw, const std

00328

std::vector<std::string> &sorted_vars) {

00329 // Define the set of ExprTk keywords/function names to filter out (lowercase)

00330 // Even though isIdentifier checks for uppercase, keep this filter as a safety measure

00331 static const std::set<std::string> keywords = {"abs",

00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386

"acos",
"acosh",
"and",
"asin",
"asinh",
"assert",
"atan",
"atan2",
"atanh",
"avg",
"break",
"case",
"ceil",
"clamp",
"continue",
"cosh",
"cos",
"cot",
"csc",
"default",
"deg2grad",
"deg2rad",
"else",
"equal",
"erfc",
"erf",
"exp",
"expml",
"false",
"floor",
"for",
"frac",
"grad2deg",
"hypot",
"iclamp",
"if",
"ilike",
"in",
"inrange",
/*"in",*/ "like",
"log",
"logl0",
"loglp",
"log2",
"logn",
"mand",
"max",
"min",
"mod",
"mor",
"mul",
"nand",
"ncdf",
"nor",

"not",

::string &expr2_raw,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

240 File Documentation

00387 "not_equal",
00388 /*"not",*/ "null"
00389 "or",
00390 "pow",
00391 "rad2deg",
00392 "repeat",
00393 "return",
00394 "root",
00395 "roundn",
00396 "round",
00397 "sec",
00398 "sgn",
00399 "shl",
00400 "shr",
00401 "sinc",
00402 "sinh",
00403 "sin",
00404 "sqrt",
00405 "sum",
00406 "swap",
00407 "switch",
00408 "tanh",
00409 "tan",
00410 "true",
00411 "trunc",
00412 "until",
00413 "var",
00414 "while",
00415 "xnor",
00416 "xor"};
00417

00418 // Regular expression to find potential identifiers (unchanged)
00419 const std::regex identifier_regex("[a-zA-Z_] [a-zA-Z0-9_]1%");
00420

00421 // Store validated and filtered variable names

00422 std::set<std::string> actual_varsl_set;

00423 std::set<std::string> actual_vars2_set;

00424

00425 // --- Helper function: build log string ---

00426 auto build_log_string = [](const auto &container) {
00427 std::ostringstream oss;

00428 oss << "[";

00429 for (auto it = container.begin(); it != container.end(); ++it) {
00430 oss << *it;

00431 if (std::next(it) != container.end()) {

00432 oss << ", "3

00433 }

00434 }

00435 oss << "]";

00436 return oss.str();

00437 };

00438

00439 // --- Process the first expression ---

00440 spdlog::debug("Extracting and validating identifiers from raw exprl: {}", exprl_raw);
00441 auto words_beginl = std::sregex_iterator(exprl_raw.begin(), exprl_raw.end(), identifier_regex);

00442 auto words_endl = std::sregex_iterator();

00443 for (std::sregex_iterator i = words_beginl; i != words_endl; ++i) {
00444 std::string potential_var = i->str();

00445 spdlog: :trace("Regex found in exprl: {}", potential_var);

00446

00447 // 1. Validate using isIdentifier (mow checks for uppercase etc.)

00448 if (isIdentifier(potential_var)) {

00449 // 2. Check if it's a keyword (still use lowercase comparison as a precaution)
00450 std::string lower_var = potential_var;

00451 std: :transform(lower_var.begin(), lower_var.end(), lower_var.begin(),
00452 [1 (unsigned char ¢) { return std::tolower(c); });
00453

00454 if (keywords.find(lower_var) == keywords.end()) {

00455 actual_varsl_set.insert(potential_var); // Keep original case

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 241

00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524

spdlog: :trace("Kept variable from expril: {}", potential_var);

} else {
spdlog: :trace("Filtered keyword from exprl: {}", potential_var);
¥
} else {
spdlog: :trace("Filtered invalid identifier from exprl: {}", potential_var);

}
spdlog: :debug("Validated variables found in expril: {}", build_log_string(actual_varsl_set));

// -—- Process the second expression ---
spdlog: :debug("Extracting and validating identifiers from raw expr2: {}", expr2_raw);
auto words_begin2 = std::sregex_iterator(expr2_raw.begin(), expr2_raw.end(), identifier_regex);
auto words_end2 = std::sregex_iterator();
for (std::sregex_iterator i = words_begin2; i != words_end2; ++i) {
std::string potential_var = i->str();

spdlog: :trace("Regex found in expr2: {}", potential_var);

// 1. Validate using isIdentifier

if (isIdentifier(potential_var)) {
// 2. Check if it's a keyword (still use lowercase comparison)
std::string lower_var = potential_var;
std::transform(lower_var.begin(), lower_var.end(), lower_var.begin(),

[1 (unsigned char c¢) { return std::tolower(c); });

if (keywords.find(lower_var) == keywords.end()) {
actual_vars2_set.insert(potential_var); // Keep original case
spdlog: :trace("Kept variable from expr2: {}", potential_var);

} else {
spdlog: :trace("Filtered keyword from expr2: {}", potential_var);

}

else {

"

spdlog::trace("Filtered invalid identifier from expr2: {}", potential_var);

}
spdlog: :debug("Validated variables found in expr2: {}", build_log_string(actual_vars2_set));

// --- Compare the two variable sets ---
if (actual_varsl_set == actual_vars2_set) {
// Sets are equal, extract the variable list
sorted_vars.assign(actual_varsl_set.begin(), actual_varsl_set.end());
std: :sort(sorted_vars.begin(), sorted_vars.end()); // Sort alphabetically
spdlog: :info("Variable sets match. Found unique variables for comparison: {}",
build_log_string(sorted_vars));
spdlog: :info("Extracted variables done !");
return true; // Variable sets are consistent
} else {
// Sets are not equal, report an error and return false
spdlog: :warn("Variable sets do not match between the two expressions!");
// Calculate the differences for more detailed logging
std::vector<std::string> diffl, diff2;
std::set_difference(actual_varsi_set.begin(), actual_varsl_set.end(), actual_vars2_set.begin(),
actual_vars2_set.end(),
std::back_inserter(diff1)); // Vars only in expri
std::set_difference(actual_vars2_set.begin(), actual_vars2_set.end(), actual_varsl_set.begin(),
actual_varsl_set.end(),

std::back_inserter(diff2)); // Vars only in expr2

if (1diffl.empty()) {

spdlog: :warn("Variables only in reference expression: {}", build_log_string(diff1));
}
if (1diff2.empty()) {

spdlog: :warn("Variables only in comparison expression: {}", build_log_string(diff2));
}
sorted_vars.clear(); // Clear the output variable list

return false; // Variable sets are inconsistent

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

242

File Documentation

00525
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620

// --- Implementation of compareSingleExpressionPair ---

void LogicComparator::compareSingleExpressionPair(const std::string &ref_expression_processed,

const std::string &comp_expression_processed,

const std::vector<std::string> &sorted_vars,

PinComparisonResult &result) {

// Store processed expressions in the result struct
result.ref_expr_processed = ref_expression_processed;

result.comp_expr_processed = comp_expression_processed;

result.comparison_possible = true; // Assume comparison is possible initially

spdlog: :debug("Comparing processed expressions for pin '{}':",

spdlog: :debug(" Ref : {}", ref_expression_processed);

spdlog: :debug(" Comp: {}", comp_expression_processed);

// --- ExprTk Setup ---
typedef exprtk::symbol_table<double> symbol_table_t;
typedef exprtk::expression<double> expression_t;

typedef exprtk::parser<double> parser_t;

// Setup for Reference Expression
symbol_table_t ref_symbol_table;
expression_t ref_expression;

parser_t ref_parser;

for (const auto &var_name : sorted_vars) {

result.pin_name);

// Create variable, ExprTk manages its memory within the table

if (!ref_symbol_table.create_variable(var_name)) {

result.error_message = "Failed to create variable '" + var_name + "' in ref symbol table.";

spdlog: :error(result.error_message) ;
result.comparison_possible = false;

return; // Cannot proceed

}

ref_expression.register_symbol_table(ref_symbol_table);

// Compile Reference Expression

result.ref_compiles = ref_parser.compile(ref_expression_processed, ref_expression);

if (!result.ref_compiles) {

result.error_message = "Reference expression compilation failed: " + ref_parser.error();

spdlog::warn("Pin '{}': {}", result.pin_name, result.error_message);

result.comparison_possible = false;
// Don't return yet, maybe the comparison one also fails
} else {

spdlog: :debug("Pin '{}': Reference expression compiled successfully.", result.pin_name);

// Setup for Comparison Expression
symbol_table_t comp_symbol_table;
expression_t comp_expression;

parser_t comp_parser;

for (const auto &var_name : sorted_vars) {
if (!comp_symbol_table.create_variable(var_name)) {

// Append error if ref also failed, otherwise set it

std::string comp_err = "Failed to create variable '" + var_name + "' in comp symbol table.";

result.error_message += (result.error_message.empty() ? "" : "\n") + comp_err;

spdlog: :error (comp_err) ;

result.comparison_possible = false; // Mark as impossible now

return; // Cannot proceed if variable creation fails

}
comp_expression.register_symbol_table(comp_symbol_table);

// Compile Comparison Expression

result.comp_compiles = comp_parser.compile(comp_expression_processed, comp_expression);

if (!result.comp_compiles) {

std::string comp_err = "Comparison expression compilation failed: " + comp_parser.error();

result.error_message += (result.error_message.empty() 7 ""

spdlog: :warn("Pin '{}': {}", result.pin_name, comp_err);

"\n") + comp_err;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 243

00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689

result.comparison_possible = false; // Mark as impossible if not already
} else {

spdlog: :debug("Pin '{}': Comparison expression compiled successfully.", result.pin_name);

// 1If either failed to compile, comparison is not possible
if (lresult.ref_compiles || !result.comp_compiles) {
result.comparison_possible = false;

return;

// --- Truth Table Generation and Comparison ---
size_t num_vars = sorted_vars.size();
// Use unsigned long long for potentially large number of combinations
unsigned long long num_combinations = 1ULL << num_vars;
// Prevent excessively large tables (e.g., > 20 variables is 1M+ rows)
const unsigned long long MAX_COMBINATIONS = 1ULL << 20; // Limit to 2720 combinations
if (num_vars > 20) { // Check against var count for clarity
result.error_message = "Too many variables (" + std::to_string(num_vars) +
"). Max supported for truth table is 20.";
spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);

result.comparison_possible = false;

return;

}

if (num_combinations == 0 && num_vars > 0) { // Overflow check
result.error_message = "Number of combinations calculation overflowed for " +

std::to_string(num_vars) + " variables.";
spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);
result.comparison_possible = false;

return;

std::vector<bool> ref_results;

std::vector<bool> comp_results;
ref_results.reserve(static_cast<size_t>(num_combinations)); // Avoid reallocations

comp_results.reserve(static_cast<size_t>(num_combinations));

// --- Prepare Tabulate Tables ---
Table ref_table;
Table comp_table;
Table: :Row_t header_row;
header_row.push_back("#"); // Row number column
for (const auto &var_name : sorted_vars) {
header_row.push_back(var_name) ;
}
header_row.push_back(ref_expression_processed); // Reference expression as last column header

ref_table.add_row(header_row);

// Adjust header for comparison table
header_row.back() = comp_expression_processed; // Change last header to comparison expression

comp_table.add_row(header_row) ;

// Format header rows

for (size_t i = 0; i < ref_table[0].size(); ++i) {
ref_table[0] [i].format().font_color(Color::yellow).font_style({FontStyle::bold});
comp_table[0] [i].format () .font_color(Color::yellow).font_style({FontStyle::bold});

spdlog: :debug("Pin '{}': Generating truth table with {} variables ({} combinations)...",

result.pin_name, num_vars, num_combinations);

bool evaluation_error = false;

for (unsigned long long i = 0; i < num_combinations; ++i) {
Table::Row_t ref_data_row;
Table::Row_t comp_data_row;
ref_data_row.push_back(std::to_string(i));
comp_data_row.push_back(std::to_string(i));

// Set variable values for this combination

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

244

File Documentation

00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749
00750
00751
00752
00753
00754
00755
00756
00757
00758

for (size_t j = 0; j < num_vars; ++j) {
// The j-th bit of i determines the value of the j-th variable
bool bit_value = ((i >> j) & 1ULL);
double var_value = bit_value ? double(1.0) : double(0.0); // ExprTk uses floating point

// Get variable reference and assign value
// Need error checking here in theory, but create_variable should have caught issues
ref_symbol_table.get_variable(sorted_vars[j])->ref() = var_value;

comp_symbol_table.get_variable(sorted_vars[jl)->ref() = var_value;

// Add input value to table rows (as string "O" or "1")
std::string bit_str = bit_value 7 "1" : "O"
ref_data_row.push_back(bit_str);
comp_data_row.push_back(bit_str);

// Evaluate expressions
double ref_val, comp_val;
try {
ref_val = ref_expression.value();
} catch (const std::exception &e) {
result.error_message +=
“\nReference evaluation failed at combination " + std::to_string(i) + ": " + e.what();
spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);
result.comparison_possible = false;
evaluation_error = true;
break; // Stop evaluation
}
try {
comp_val = comp_expression.value();
} catch (const std::exception &e) {
result.error_message +=
"\nComparison evaluation failed at combination " + std::to_string(i) + ": " + e.what();
spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);
result.comparison_possible = false;
evaluation_error = true;

break; // Stop evaluation

// Store boolean results (commonly, non-zero is true in logic contexts)
bool ref_bool_result = (ref_val != double(0.0));
bool comp_bool_result = (comp_val != double(0.0));

ref_results.push_back(ref_bool_result);

comp_results.push_back(comp_bool_result);

// Add output results to table rows (as string "0" or "1")
ref_data_row.push_back(ref_bool_result 7 "1" : "0");

comp_data_row.push_back(comp_bool_result ? "1" : "0");

// Add rows to tables
ref_table.add_row(ref_data_row);

comp_table.add_row(comp_data_row) ;

} // End of combination loop

if (evaluation_error) {

return; // Don't proceed if evaluation failed

// --- Final Comparison ---
if (result.comparison_possible) {
result.are_equivalent = (ref_results == comp_results);
if (result.are_equivalent) {
spdlog::info("Pin '{}': Expressions ARE logically equivalent.", result.pin_name);
} else {
spdlog::warn("Pin '{}': Expressions ARE NOT logically equivalent.", result.pin_name);
result.error_message +=

"\nTruth table outputs differ."; // Add specific reason for non-equivalence

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp

245

00759
00760
00761
00762
00763
00764
00765
00766
00812
00813
00814
00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840
00841
00842
00843
00844
00845
00846
00847
00848
00849
00850
00851
00852
00853
00854
00855
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865
00866
00867
00868
00869
00870
00871
00872

// Store the generated tables in the result struct
result.ref_truth_table = ref_table;
result.comp_truth_table = comp_table;

void LogicComparator: :compareCellLogic() {

// 1. Collect all unique pin names from both maps

std::set<std::string> unique_pin_names;

for (const auto &pair : ref_outpin_map_) {
unique_pin_names.insert(pair.first);

}

for (const auto &pair : comp_outpin_map_) {

unique_pin_names.insert(pair.first);

spdlog::info("Starting logic comparison for cell '{}' with {} unique output pins...", cell_name_,
pdlog g log p q! put p

unique_pin_names.size());

// 2. Iterate through each unique pin name

for (const std::string &pin_name : unique_pin_names) {
PinComparisonResult pin_result;
pin_result.pin_name = pin_name;

pin_result.comparison_possible = true; // Assume possible initially

// 3. Get raw expressions
auto ref_it = ref_outpin_map_.find(pin_name);

auto comp_it = comp_outpin_map_.find(pin_name);

if (ref_it == ref_outpin_map_.end()) {
pin_result.error_message = "Pin not found in reference map.";
spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name, pin_result.error_message);
pin_result.comparison_possible = false;

// Still try to get the comparison expression for reporting

if (comp_it != comp_outpin_map_.end()) {
pin_result.comp_expr_raw = comp_it->second;
}
} else {

pin_result.ref_expr_raw = ref_it->second;

spdlog: :debug("Pin -> Expression: {} -> {}", pin_name, pin_result.ref_expr_raw);

if (comp_it == comp_outpin_map_.end()) {
std::string comp_err = "Pin not found in comparison map.";
pin_result.error_message += (pin_result.error_message.empty() ? "" : "\n") + comp_err;

spdlog: :warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name, comp_err);
pin_result.comparison_possible = false;
// 1f ref existed, store it
if (ref_it != ref_outpin_map_.end()) {
pin_result.ref_expr_raw = ref_it->second; // Already stored if ref exists
}
} else {
pin_result.comp_expr_raw = comp_it->second;

spdlog: :debug("Pin => Expression: {} => {}", pin_name, pin_result.comp_expr_raw);

// 1f pin missing in either, we can't compare, but store result and continue
if (!pin_result.comparison_possible) {
all_pin_results_[pin_name] = pin_result;

continue;

// 4. Preprocess expressions
std::string ref_processed = preprocessExpression(pin_result.ref_expr_raw);

std::string comp_processed = preprocessExpression(pin_result.comp_expr_raw) ;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

246

File Documentation

00873
00874
00875
00876
00877
00878
00879
00880
00881
00882
00883
00884
00885
00886
00887
00888
00889
00890
00891
00892
00893
00894
00895
00896
00897
00898
00899
00900
00901
00902
00903
00904
00905
00906
00907
00908
00909
00910
00911
00912
00913
00914
00915
00916
00917
00918
00919
00920
00921
00922
00923
00924
00925
00926
00927
00928
00929
00930
00931
00932
00933
00934
00974
00975
00976
00977
00978
00979
00980

if (ref_processed.empty()) {
pin_result.error_message += "\nReference expression became empty after preprocessing.";
spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name,
"Reference expression became empty after preprocessing.");
pin_result.comparison_possible = false;
}
if (comp_processed.empty()) {
std::string comp_err = "\nComparison expression became empty after preprocessing.";
pin_result.error_message += (pin_result.error_message.empty() 7 "" : "\n") + comp_err;
spdlog: :warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name,
"Comparison expression became empty after preprocessing.");
pin_result.comparison_possible = false; // Mark as impossible if not already
}
// 1f preprocessing failed for either, store and continue
if (ref_processed.empty() || comp_processed.empty()) {
pin_result.ref_expr_processed = ref_processed; // Store possibly empty strings
pin_result.comp_expr_processed = comp_processed;
all_pin_results_[pin_name] = pin_result;
continue;
}
// 5. Extract and validate variables
std::vector<std::string> sorted_vars;
// Pass RAW expressions to extractVariables as it uses regex on original format
bool variables_match =
extractVariables(pin_result.ref_expr_raw, pin_result.comp_expr_raw, sorted_vars);
if (!lvariables_match) {
pin_result.error_message = "Variable sets do not match between expressions.";
// extractVariables already logs details
pin_result.comparison_possible = false;
pin_result.ref_expr_processed = ref_processed; // Store processed even if vars mismatch
pin_result.comp_expr_processed = comp_processed;
all_pin_results_[pin_name] = pin_result;
continue;
}
// --- Helper function: build log string ---
auto build_log_string = [](const auto &container) {
std::ostringstream oss;
for (auto it = container.begin(); it != container.end(); ++it) {
oss << *it;
if (std::next(it) != container.end()) {
oss << ", "
}
}
return oss.str();
3
spdlog::info("Pin '{}': Variable sets match. Found unique variables: {}", pin_name,
build_log_string(sorted_vars));
// 6. Compare the single pair using the processed expressions
// Pass pin_result by reference - it will be populated by the function
compareSingleExpressionPair(ref_processed, comp_processed, sorted_vars, pin_result);
// 7. Store the detailed result for this pin
all_pin_results_[pin_name] = pin_result;
} // End of pin loop
spdlog: :info("Logic comparison finished for cell '{}'.", cell_name_);
}
void LogicComparator::generateReport(const std::string &output_file) {

// --- 0. Start Info ---
spdlog: :info("Generating report for cell '{}' to '{}'...", cell_name_, output_file);
// --- 1. Determine Output Format ---

bool output_markdown = false;

try {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 247

00981 // Use std::filesystem to reliably get the extension

00982 std::filesystem::path file_path(output_file);

00983 if (file_path.has_extension() && file_path.extension() == ".md") {

00984 output_markdown = true;

00985 }

00986 } catch (const std::exception &e) {

00987 spdlog: :warn("Could not determine file extension for '{}': {}. Defaulting to plain text.",
00988 output_file, e.what());

00989 output_markdown = false; // Default to plain text on error

00990 }

00991

00992 // --- 2. Open Output File ---

00993 std::ofstream outfile(output_file,

00994 std::ios::app); // Use app to append if file exists, or create new
00995 if (loutfile.is_open()) {

00996 spdlog: :error("Failed to open output report file: {}", output_file);

00997 return;

00998 }

00999 spdlog::info("Generating report for cell '{}' to '{}' (Format: {})...", cell_name_, output_file,
01000 output_markdown ? "Markdown" : "Plain Text");

01001

01002 // --- 3. Report Header ---

01003 outfile << "# Logic Equivalence Comparison Report\n\n";

01004 outfile << "*%Cell Name: " << cell_name_ << ”**\n\n";

01005 // Reference Pin Functions Table

01006 Table ref_pin_table;

01007 ref_pin_table.add_row({"Reference Pin", "Function"});

01008 ref_pin_table[0] [0].format().font_style({FontStyle::bold});
01009 ref_pin_table[0] [1].format().font_style({FontStyle::bold});
01010 for (const auto &[pin, function] : ref_outpin_map_) {

01011 ref_pin_table.add_row({pin, """ + function + "“"}); // Add backticks to function
01012 }

01013 // Comparison Pin Functions Table

01014 Table comp_pin_table;

01015 comp_pin_table.add_row({"Comparison Pin", "Function"});
01016 comp_pin_table[0] [0].format () .font_style({FontStyle::bold});
01017 comp_pin_table[0] [1].format().font_style({FontStyle::bold});
01018 for (const auto &[pin, function] : comp_outpin_map_) {

01019 comp_pin_table.add_row({pin, """ + function + "“"}); // Add backticks to function
01020 }

01021

01022 // --- 4. Report Metadata ---

01023 outfile << "s*Performed by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;
01024 auto now = std::chrono::system_clock: :now();

01025 std::time_t now_time_t = std::chrono::system_clock::to_time_t(now);

01026 std::tm *now_tm = std::localtime(&now_time_t);

01027 outfile << ". on: " << std::put_time(now_tm, "Jc") << "#*\n" << std::endl;

01028

01029 // --- 5. Legend Generation ---

01030 outfile << "## Legend\n\n";

01031 Table legend_table;

01032 legend_table.add_row({"Symbol", "Meaning"});

01033 legend_table[0] [0].format().font_style({FontStyle::bold});

01034 legend_table[0][1].format().font_style({FontStyle::bold});

01035 legend_table.add_row({"[0K]", "Logically Equivalent"});

01036 legend_table.add_row({"[NO]", "Not Logically Equivalent"});

01037 legend_table.add_row({"[NA]", "Comparison Not Applicable (General)"}); // Changed from possible
01038 legend_table.add_row({"[VM]", "Variable Mismatch (Cannot Compare)"});

01039 legend_table.add_row({"[CE]", "Compilation Error (Cannot Compare)"});

01040 legend_table.add_row({"[EE]", "Evaluation Error (Cannot Compare)"});

01041 legend_table.add_row({"[PE]", "Preprocessing/Pin/Setup Error (Cannot Compare)"});

01042

01043 // --- 6. Export Legend Table ---

01044 if (output_markdown) {

01045 MarkdownExporter exporter;

01046 outfile << exporter.dump(ref_pin_table) << "\n"; // Export ref pin table
01047 outfile << exporter.dump(comp_pin_table) << "\n"; // Export comp pin table
01048 outfile << exporter.dump(legend_table) << "\n"; // Export legend table

01049 } else {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

248 File Documentation

01050 outfile << ref_pin_table << "\n"; // Export ref pin table

01051 outfile << comp_pin_table << "\n"; // Export comp pin table

01052 outfile << legend_table << "\n"; // Export legend table (plain text)

01053 }

01054

01055 // --- 7. Process Pin Results ---

01056 for (const auto &[pin_name, result] : all_pin_results_) { // Use passed argument

01057 outfile << "## Pin: ~" << pin_name << "“\n\n"; // Use backticks for pin name
01058

01059 // --- Output Truth Tables (Always if available) ---

01060 if (result.ref_truth_table.has_value()) {

01061 outfile << "### Reference Truth Table\n\n";

01062 Table ref_table = result.ref_truth_table.value();

01063 if (output_markdown) {

01064 MarkdownExporter exporter;

01065 outfile << exporter.dump(ref_table) << "\n";

01066 } else {

01067 outfile << ref_table << "\n";

01068 }

01069 } else {

01070 outfile << "#Reference truth table not generated (e.g., due to compilation error).*\n\n";
01071 }

01072

01073 if (result.comp_truth_table.has_value()) {

01074 outfile << "### Comparison Truth Table\n\n";

01075 Table comp_table = result.comp_truth_table.value();

01076 if (output_markdown) {

01077 MarkdownExporter exporter;

01078 outfile << exporter.dump(comp_table) << "\n";

01079 } else {

01080 outfile << comp_table << "\n";

01081 ¥

01082 } else {

01083 outfile << "*Comparison truth table not generated (e.g., due to compilation error).*\n\n";
01084 }

01085

01086 // --- Generate Summary Table ---

01087 outfile << "### Comparison Summary\n\n";

01088 Table summary_table;

01089 summary_table.add_row({"Property", "Value"});

01090 summary_table[0] [0] .format () .font_style ({FontStyle::bold});

01091 summary_table[0] [1].format () .font_style({FontStyle::bold});

01092 summary_table[0] [0] .format () .font_color(Color::yellow);

01093 summary_table[0] [1].format () .font_color(Color::yellow);

01094

01095 // Determine Status Symbol using ASCII codes

01096 std::string status_symbol;

01097 if (!result.comparison_possible) {

01098 status_symbol = "[NA]"; // Default Not Applicable

01099 if (lresult.error_message.empty()) {

01100 if (result.error_message.find("Variable sets do not match") != std::string::npos) {
01101 status_symbol = "[VM]";

01102 } else if (!result.ref_compiles || !result.comp_compiles ||

01103 result.error_message.find("compilation failed") != std::string::npos) {
01104 // Check flags first, then error message as fallback

01105 status_symbol = "[CE]";

01106 } else if (result.error_message.find("evaluation failed") != std::string::npos) {
01107 status_symbol = "[EE]";

01108 } else {

01109 // If comparison_possible is false for other reasons (e.g., pin missing, setup errors)
01110 status_symbol = "[PE]";

01111 }

01112 } else if (!result.ref_compiles || !result.comp_compiles) {

01113 // Handle cases where comparison_possible might be true but compilation failed (should
01114 // ideally not happen if logic is sound)

01115 status_symbol = "[CE]";

01116 } else {

01117 status_symbol = "[PE]"; // Fallback if no error message but still not possible
01118 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 249

01119
01120
01121
01122
01123
01124
01125
01126
01127
01128
01129
01130
01131
01132
01133
01134
01135
01136
01137
01138
01139
01140
01141
01142
01143
01144
01145
01146
01147
01148
01149
01150
01151
01152
01153
01154
01155
01156
01157
01158
01159
01160
01161
01162
01163
01164
01165
01166
01167
01168
01169
01170
01171
01172 }

-

else if (result.are_equivalent) {
status_symbol = "[0K]";

else {

status_symbol = "[NO]";

-

summary_table.add_row({"Status", status_symboll});
summary_table.add_row({"Reference (Raw)", "*" + result.ref_expr_raw + "“"});
summary_table.add_row({"Comparison (Raw)", " " + result.comp_expr_raw + " "});
summary_table.add_row({"Reference (Processed)", " " + result.ref_expr_processed + " "});
summary_table.add_row({"Comparison (Processed)", """ + result.comp_expr_processed + """});
summary_table.add_row({"Ref Expression Compiled", result.ref_compiles 7 "Yes" : "No"1});
summary_table.add_row({"Comp Expression Compiled", result.comp_compiles ? "Yes" : "No"});
summary_table.add_row({"Logically Equivalent", result.comparison_possible

? (result.are_equivalent ? "Yes" : "No")

"N/A"});

summary_table[1] [0].format () .font_style({FontStyle::bold});
summary_table[2] [0] .format () .font_style({FontStyle::bold});
summary_table[3] [0] .format () .font_style({FontStyle::bold});
summary_table[4] [0] .format () .font_style({FontStyle::bold});
summary_table[5] [0].format () .font_style({FontStyle::bold});
summary_table[6] [0] .format () .font_style({FontStyle::bold});
summary_table[7] [0] .format () .font_style({FontStyle::bold});
summary_table[8] [0].format () .font_style({FontStyle::bold});

if (!lresult.error_message.empty()) {
std::string formatted_error = result.error_message;
if (output_markdown) {
// Basic newline replacement for Markdown
size_t pos = 0;
while ((pos = formatted_error.find('\n', pos)) != std::string::npos) {
formatted_error.replace(pos, 1, "
");

pos += 4; // Length of "
"

}

summary_table.add_row({"Details/Error", formatted_error});

// Output Summary Table
if (output_markdown) {
MarkdownExporter exporter;
outfile << exporter.dump(summary_table) << "\n";
} else {
outfile << summary_table << "\n";
}

std::cout << summary_table << "\n"; // Print to console for immediate feedback

outfile << "---\n\n"; // Separator between pins

} // End of pin results loop

outfile.close();

spdlog::info("Report generation complete for cell '{}'.", cell_name_);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

250 File Documentation

7.41 src/LogicExtractor.cpp File Reference

#include "LogicExtractor.hpp"
Include dependency graph for LogicExtractor.cpp:

src/LogicExtractor.cpp
LogicExtractor.hpp
verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

Functions

= void extractAndPrintNetlistInfo (const std::string &verilog_file, const std::string &cell)
Extracts and prints netlist information from a Verilog file for a specified cell.

= std::map< std::string, std::string > extractLogicFromVerilog (const std::string &verilog_file, const
std::string &cell)

Extracts logic expressions from a Verilog file for a specified cell.

7.41.1 Function Documentation

7.41.1.1 extractAndPrintNetlistInfo()

void extractAndPrintNetlistInfo (
const std::string & wverilog_file,

const std::string & cell)
Extracts and prints netlist information from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, extracts information about the primary inputs,
primary outputs, internal wires, and gate drivers within a specified cell (module). It then prints a summary

of the extracted information to the console using spdlog.

Parameters

verilog_file | The path to the Verilog file to be parsed.

cell The name of the cell (module) for which to extract netlist information.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.41 src/LogicExtractor.cpp File Reference 251

Exceptions

‘ std::exception ‘ If any error occurs during Verilog parsing or info extraction.

Note

The function uses the slang library for Verilog parsing and a custom LogicExtractor class to extract

the desired information. Error messages are logged using spdlog.

Definition at line 676 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::getExtracted
Gates

LogicExtractor::getinternal
Wires

extractAndPrintNetlistinfo |

LogicExtractor::getPrimary
Inputs

—LogicExtractor::getPrimary
Outputs

7.41.1.2 extractLogicFromVerilog()

std::map< std::string, std::string > extractLogicFromVerilog (
const std::string & wverilog_file,

const std::string & cell)
Extracts logic expressions from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, identifies the specified cell, and extracts the
logic expressions for its outputs. It returns a map where the keys are output signal names and the values

are their corresponding logic expressions as strings.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

252 File Documentation

Parameters

verilog_file | The path to the Verilog file to parse.

cell The name of the cell (module) for which to extract logic expressions.

Returns

A map of output signal names to their logic expressions. Returns an empty map if parsing fails,

the cell is not found, or no logic expressions can be derived.

Note

The function uses the slang library for Verilog parsing. Ensure that slang is properly installed and

configured before using this function.

The logic extraction process involves traversing the syntax tree of the Verilog code and identifying

relevant assignments and expressions within the specified cell.

Error messages and warnings are logged using the spdlog library.

Definition at line 755 of file LogicExtractor.cpp.

Here is the call graph for this function:

A i ‘ LogicExtractor::getLogic ‘ LogicExtractor::deriveLogic [" »
extractLogicFromVerilog ‘ Expressions ‘ Recursive 1 LogicExtractor::formatExpression

Here is the caller graph for this function:

funcLibFile I extractLogicFromVerilog

7.42 LogicExtractor.cpp

Go to the documentation of this file.
00001 #include "LogicExtractor.hpp"

00002

00003 // --- Implementation for LogicExtractor ---

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp

253

00004
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115

void LogicExtractor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

if (parsingComplete_)

return; // Don't re-process

if called again

if (module.header && module.header—>name.valid()) {

std::string_view moduleName = module.header->name.valueText();
if (!targetCell_.empty() && moduleName == targetCell_) {
spdlog: :info("LogicExtractor: Found target module: {}", targetCell_);

inTargetModule_ = true;

// Reset state for the target module

primaryInputs_.clear();
primaryQutputs_.clear();

internalWires_.clear();

portDirections_.clear(); // Clear temporary direction map

gateOutputDrivers_.clear();
// logicCache_.clear(); // For Step 2

// Visit children (ports, declarations, instances) IN ORDER
// It's often better to visit declarations first, then the port list
// Slang's default visitDefault might handle this, but be aware.

visitDefault (module);

// -—- Finalize Ports after visiting declarations and port list ---
// This part might be better placed *after* visiting NonAnsiPortList,
// assuming the list visit confirms the names from the header.

// Let's move the finalization logic to handle(NonAnsiPortListSyntax)

// Mark that we finished processing the target module

inTargetModule_ = false; // Important to prevent processing other modules
parsingComplete_ = true; // Stop processing after finding the target

spdlog: :info("LogicExtractor: Finished visiting target module '{}'.", targetCell_);

-

// If not the target module yet, continue searching

visitDefault (module);
}
} else if (!parsingComplete_)

// Handle modules without valid headers if necessary, or just traverse

visitDefault (module);

// Handle Port Declarations (defines direction and type, usually inside module body)

void LogicExtractor::handle(const slang::syntax::PortDeclarationSyntax &portDecl) {

if (!inTargetModule_)

return;

spdlog: :debug("LogicExtractor: Handling Port Declaration");

else if (!parsingComplete_

) A

{

std::string direction = "unknown";

if (portDecl.header) {

// Determine direction (input/output/inout)

// Important: Use valueText() as Slang typically represents keywords as text tokens

if (auto varHeader = portDecl.header—)as_if(slang::syntax::VariablePortHeaderSyntax>()) {

if (varHeader->direction.valid()) {

direction = std::string(varHeader->direction.valueText());

}

} else if (auto netHeader =

portDecl.header->as_if<slang::syntax: :NetPortHeaderSyntax>()) {

if (netHeader->direction.valid()) {

direction = std::string(netHeader->direction.valueText());

}

// Add InterfacePortHeaderSyntax if needed

} else {

spdlog: :warn("LogicExtractor: Port declaration without header found.");

for (const auto &declarator

: portDecl.declarators) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

254 File Documentation

00116 if (declarator->name.valid()) {

00117 std::string portName = std::string(declarator->name.valueText());

00118 if (portDirections_.count(portName) && portDirections_[portName] != "unknown") {

00119 spdlog: :warn("LogicExtractor: Multiple direction declarations for port '{}'. Keeping first "
00120 "one ('{}'). New direction: '{}'",

00121 portName, portDirections_[portName], direction);

00122 } else {

00123 spdlog: :info("LogicExtractor: Storing direction '{}' for port '{}'", direction, portName);
00124 portDirections_[portName] = direction;

00125 if (direction == "input") {

00126 primaryInputs_.insert (portName) ;

00127 internalWires_.insert(portName); // Inputs are also technically 'wires' usable internally
00128 } else if (direction == "output") {

00129 primaryOutputs_.insert (portName) ;

00130 internalWires_.insert(portName); // Outputs are also wires driven by something

00131 } else if (direction == "inout") {

00132 spdlog: :info("LogicExtractor: Inout port '{}' found. Adding to both inputs and outputs.",
00133 portName) ;

00134 primaryInputs_.insert (portName) ;

00135 primaryOutputs_.insert (portName) ;

00136 internalWires_.insert(portName) ;

00137 } else {

00138 spdlog: :warn("LogicExtractor: Port '{}' found in declaration but has unknown or missing "
00139 "direction '{}'. Treating as internal wire.",

00140 portName, direction);

00141 internalWires_.insert (portName) ;

00142 ¥

00143 // logicCache_[portName] = portName; // For Step 2

00144 }

00145 } else {

00146 spdlog: :warn(

00147 "LogicExtractor: Port declarator without a name found in PortDeclarationSyntax.");

00148 }

00149 }

00150 // Don't call visitDefault here, as it might revisit things unexpectedly.

00151 // Let the main module visitor handle traversing into children if necessary.
00152 }

00153

00154 // Handle Non-ANSI Port List (defines names, usually in module header)

00179 void LogicExtractor::handle(const slang::syntax::NonAnsiPortListSyntax &portList) {
00180 if (!inTargetModule_)

00181 return;

00182 spdlog::debug("LogicExtractor: Handling NonAnsi Port List");

00183

00184 for (const auto portSyntax : portList.ports) {

00185 if (!portSyntax)

00186 continue;

00187

00188 std::string portName = "";

00189 // Most common case: ImplicitNonAnsiPortSyntax contains the expression (usually just the name)
00190 if (auto implicitPort = portSyntax->as_if<slang::syntax::ImplicitNonAnsiPortSyntax>()) {
00191 if (implicitPort->expr) {

00192 // The expression itself might be complex, try to get the simple name

00193 if (auto portRef = implicitPort->expr->as_if<slang::syntax::PortReferenceSyntax>()) {
00194 if (portRef->name.valid()) {

00195 portName = std::string(portRef->name.valueText());

00196 }

00197 } else if (auto portConcat =

00198 implicitPort->expr->as_if<slang::syntax::PortConcatenationSyntax>()) {
00199 // Handle concatenations if necessary - complex

00200 spdlog: :warn("LogicExtractor: Port concatenation found in NonAnsi port list - currently "
00201 "not fully handled for logic extraction. Port: {}",

00202 implicitPort->toString());

00203 continue; // Skip complex ports for now

00204 } else {

00205 // Fallback: try getting name from the expression directly (might be just identifier)
00206 portName = implicitPort->toString();

00207 }

00208 ¥

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 255

00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286

}
// Handle ExplicitNonAnsiPortSyntax (e.g., .A(A)) if needed
else if (auto explicitPort = portSyntax->as_if<slang::syntax::ExplicitNonAnsiPortSyntax>()) {
if (explicitPort->name.valid()) {
portName = std::string(explicitPort->name.valueText());
// Note: explicitPort->expr is the internal signal it connects to.

// We are primarily interested in the port's own name (explicitPort->name) here.
p y P P

}

// Handle EmptyNonAnsiPortSyntax (commas for placeholders) if necessary

else if (portSyntax->kind == slang::syntax::SyntaxKind::EmptyNonAnsiPort) {
spdlog: :debug("LogicExtractor: Skipping empty non-ANSI port placeholder.");
continue;

} else {
spdlog: :warn("LogicExtractor: Unhandled NonAnsi port syntax kind: {}",

slang::syntax::toString(portSyntax->kind));

continue;

// Now we (hopefully) have the portName.
if (!portName.empty()) {
if (portDirections_.count (portName)) {
const std::string &direction = portDirections_[portName];
spdlog: :debug("LogicExtractor: Finalizing port '{}' with direction '{}'", portName,

direction);

if (direction == "input") {
primaryInputs_.insert (portName) ;
internalWires_.insert(portName); // Inputs are also technically 'wires' usable internally

// logicCache_[portName] = portName; // For Step 2

[

else if (direction == "output") {
primaryOutputs_.insert (portName) ;

internalWires_.insert(portName); // Outputs are also wires driven by something

w

else if (direction == "inout") {

spdlog: :info("LogicExtractor: Inout port '{}' found. Adding to both inputs and outputs.",
portName) ;

primaryInputs_.insert (portName) ;

primaryQutputs_.insert (portName) ;

internalWires_.insert (portName) ;

// logicCache_[portName] = portName; // For Step 2

else {

"

spdlog: :warn("LogicExtractor: Port '{}' found in list but has unknown or missing "
"direction '{}'. Treating as internal wire.",
portName, direction);

internalWires_.insert(portName) ;

}
} else {
spdlog: :debug("LogicExtractor: Port '{}' found in NonAnsi list, no direction declaration ",
portName) ;
}
} else {

spdlog: :warn("LogicExtractor: Could not determine port name from NonAnsi port list item: {}",

portSyntax->toString());

}

// Don't call visitDefault here

// Handle explicit wire declarations

void LogicExtractor::handle(const slang::syntax::NetDeclarationSyntax &netDecl) {

if (!inTargetModule_)

return;

for (const auto &declarator : netDecl.declarators) {
if (declarator->name.valid()) {
std::string wireName = std::string(declarator->name.valueText());
spdlog: :debug("LogicExtractor: Found wire declaration: {}", wireName);
// Avoid adding ports again if they were also declared as nets (common)

if (!primaryInputs_.count(wireName) && !primaryQutputs_.count(wireName)) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

256 File Documentation

00287 internalWires_.insert(wireName) ;

00288 } else {

00289 spdlog: :trace("LogicExtractor: Wire '{}' is already known as a port.", wireName);
00290 ¥

00291 }

00292 }

00293 // Don't call visitDefault here

00294 }

00295

00296 // Handle primitive gate instantiations (MOST IMPORTANT PART)

00309 void LogicExtractor::handle(const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst) {

00310 if (!inTargetModule_)

00311 return;

00312

00313 if (!primitivelnst.type.valid()) {

00314 spdlog: :warn("LogicExtractor: Primitive instance without a type token found.");
00315 return;

00316}

00317

00318 // Use token kind for reliable checking, text for name storage

00319 slang::parsing::TokenKind gateKind = primitiveInst.type.kind;

00320 std::string gateTypeName = std::string(primitivelnst.type.valueText());

00321

00322 spdlog::debug("LogicExtractor: Found Primitive Instance of Type: {} (Kind: {})", gateTypeName,

00323 slang: :parsing: :toString(gateKind)) ;

00324

00325 for (const auto &instance : primitivelnst.instances) {

00326 // if (linstance || !instance->connections.isInitialized()) { // Check if connections are valid
00327 // spdlog: :warn("LogicExtractor: Skipping primitive instance of type {} due to null pointer or
00328 /"

00329 // "uninitialized connectiomns.",

00330 // gateTypeName) ;

00331 // continue;

00332 //}

00333

00334 GateInfo currentGatelnfo;

00335 currentGateInfo.gateTypeName = gateTypeName;

00336 currentGateInfo.kind = gateKind;

00337

00338 // Primitives usually have ordered connections.

00339 // The FIRST connection is typically the OUTPUT.

00340 // The REST are INPUTS.

00341 if (instance->connections.empty()) {

00342 spdlog: :warn("LogicExtractor: Gate instance of type {} has no connections.", gateTypeName);
00343 continue;

00344 }

00345

00346 // Extract Output Signal

00347 // Ensure the connection itself is not null

00348 if (!instance->connections[0]) {

00349 spdlog: :error("LogicExtractor: First connection (output) is null for primitive {}",
00350 gateTypeName) ;

00351 continue;

00352 }

00353 if (auto firstConn =

00354 instance->connections[0]->as_if<slang::syntax::0rderedPortConnectionSyntax>()) {
00355 currentGateInfo.outputSignal =

00356 firstConn->expr->toString(); // Get the output signal name from the connection
00357 // remove extra spaces in the signal name

00358 currentGateInfo.outputSignal.erase(

00359 std: :remove_if (currentGateInfo.outputSignal.begin(), currentGateInfo.outputSignal.end(),
00360 [1(unsigned char x) { return std::isspace(x); }),

00361 currentGateInfo.outputSignal.end());

00362 if (!currentGateInfo.outputSignal.empty()) {

00363 spdlog: :debug(" Output Signal: {}", currentGateInfo.outputSignal);

00364 // Gate outputs are internal signals (unless they are module outputs)

00365 // Add to internal wires if not already a primary output.

00366 if (!primaryOutputs_.count(currentGateInfo.outputSignal)) {

00367 internalWires_.insert(currentGateInfo.outputSignal);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 257

00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436

}
} else {
spdlog: :error(
"LogicExtractor: Could not determine output signal name for gate instance of type {}",
gateTypeName) ;
continue; // Skip this instance if output is unknown
}
} else {
spdlog: :error("LogicExtractor: Expected OrderedPortConnectionSyntax for output of primitive "
"{}, but got kind: {}. Comn: {}",
gateTypeName, slang::syntax::toString(instance->connections[0]->kind),
instance->connections[0]->toString());

continue; // Skip this instance

// Extract Input Signals
for (size_t i = 1; i < instance->connections.size(); ++i) {
// Ensure the connection itself is not null
if (linstance->connections[i]) {
spdlog: :warn("LogicExtractor: Input connection {} is null for primitive {}", i,
gateTypeName) ;
continue;
}
if (auto conn =
instance->connections[i]->as_if<slang: :syntax: :0rderedPortConnectionSyntax>()) {
std::string inputSig =
conn->expr->toString(); // Get the input signal name from the connection
// remove extra spaces in the signal name
inputSig.erase(std: :remove_if (inputSig.begin(), inputSig.end(),
[1(unsigned char x) { return std::isspace(x); }),
inputSig.end());
if (!inputSig.empty()) {
currentGateInfo.inputSignals.push_back(inputSig);
spdlog: :debug(" Input Signal {}: {}", i, inputSig);
else {

[

spdlog: :warn("LogicExtractor: Could not determine input signal name for input {} of gate "
"instance type {}. Conn: {}",
i, gateTypeName, conn->toString());
// Decide whether to skip or continue with partial inputs
}
} else {
spdlog: :warn("LogicExtractor: Expected OrderedPortConnectionSyntax for input {} of "
"primitive {}, but got kind: {}. Conn: {}",
i, gateTypeName, slang::syntax::toString(instance->connections[i]->kind),

instance->connections[i]->toString());

// Store the gate information, mapping the output signal to its driving gate
if (!currentGateInfo.outputSignal.empty()) {
if (gateOutputDrivers_.count(currentGateInfo.outputSignal)) {
// This is a critical warning - indicates multiple drivers for the same net!
spdlog: :error("LogicExtractor: Multiple drivers found for signal '{}'! Previous driver: "
"{}, New driver: {}. Netlist is likely invalid.",
currentGateInfo.outputSignal,
gateOutputDrivers_[currentGateInfo.outputSignall .gateTypeName, gateTypeName);
// Keep the first one found for now, or decide on error handling
} else {
spdlog: :info(" Storing driver for '{}': Gate Type '{}'", currentGateInfo.outputSignal,
gateTypeName) ;

gateOutputDrivers_[currentGateInfo.outputSignal]l = currentGatelInfo;

}
// Don't call visitDefault here

// --- Logic Derivation Implementation ---

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

258

File

Documentation

00437 // Public method called after visiting the tree

00451 std::map<std::string, std::string> LogicExtractor::getLogicExpressions() {
00452 std: :map<std::string, std::string> result_map;

00453 if (!parsingComplete_) {

00454 spdlog: :error("LogicExtractor: AST parsing did not complete or target module '{}' not found. "
00455 "Cannot extract logic.",

00456 targetCell_);

00457 return result_map; // Return empty map

00458 }

00459

00460 spdlog::info("LogicExtractor: Deriving logic expressions for {} output ports...",

00461 primaryOutputs_.size());

00462

00463 for (const std::string &outputPort : primaryOutputs_) {

00464 spdlog: :debug("LogicExtractor: Deriving logic for output: {}", outputPort);

00465 try {

00466 result_map[outputPort] = derivelLogicRecursive (outputPort);

00467 spdlog::info(" Output: {} => {}", outputPort, result_map[outputPort]);

00468 } catch (const std::runtime_error &e) {

00469 spdlog: :error("LogicExtractor: Error deriving logic for output '{}': {}", outputPort,
00470 e.what());

00471 result_map[outputPort] = "/* Error deriving logic */";

00472 } catch (...) {

00473 spdlog: :error("LogicExtractor: Unknown error deriving logic for output '{}'", outputPort);
00474 result_map[outputPort] = "/* Unknown error deriving logic */";

00475 }

00476 }

00477 return result_map;

00478 }

00479

00480 // Recursive function with memoization

00510 std::string LogicExtractor::deriveLogicRecursive(const std::string &signalName) {
00511 // 1. Check Cache (Memoization)

00512 if (logicCache_.count(signalName)) {

00513 return logicCache_.at(signalName);

00514 }

00515

00516 // 2. Base Case: Is it a primary input?

00517 if (primaryInputs_.count(signalName)) {

00518 // Already cached during port handling, but double-check
00519 if (!logicCache_.count(signalName)) {

00520 logicCache_[signalName] = signalName;

00521 }

00522 return signalName;

00523 }

00524

00525 // 3. Recursive Step: Is it driven by a gate?
00526 if (gateOutputDrivers_.count(signalName)) {

00527 const GateInfo &driverGate = gateOutputDrivers_.at(signalName);

00528 std::vector<std::string> inputExpressions;

00529 spdlog: :debug(" Tracing signal '{}', driven by {} gate", signalName,
00530 driverGate.gateTypeName) ;

00531

00532 // Recursively find expressions for all inputs of this gate

00533 for (const std::string &inputSig : driverGate.inputSignals) {

00534 if (inputSig.empty()) {

00535 throw std::runtime_error ("Empty input signal name encountered for gate driving " +
00536 signalName) ;

00537 }

00538 spdlog: :debug (" Recursing for input: {}", inputSig);

00539 inputExpressions.push_back(deriveLogicRecursive (inputSig)) ;

00540 }

00541

00542 // Format the expression based on gate type and input expressions
00543 std::string currentExpr = formatExpression(driverGate, inputExpressions);
00544

00545 // Cache the result

00546 logicCache_[signalName] = currentExpr;

00547 return currentExpr;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 259

00548 }

00549

00550 // 4. Handle Assign statements (if implemented)
00551 // if (assignDrivers_.count(signalName)) { ... }
00552

00553 // 5. Error Case: Signal not found or not driven by known element
00554 // Check if it's just an internal wire that wasn't driven?

00555 if (internalWires_.count(signalName)) {

00556 throw std::runtime_error(
00557 "Signal '" + signalName +
00558 "' is an internal wire but has no identified driver (gate or assign).“);

00559 } else {

00560 throw std::runtime_error(

00561 "Signal '" + signalName +

00562 "' is not a primary input, known wire, or driven by a recognized gate/assignment.");
00563 }

00564 }

00565

00566 // Helper to format the expression string based on gate type
00584 std::string LogicExtractor::formatExpression(const GateInfo &gateInfo,

00585 const std::vector<std::string> &inputExprs) {
00586 if (inputExprs.empty() && gateInfo.kind != slang::parsing::TokenKind::NotKeyword &&
00587 gateInfo.kind != slang::parsing::TokenKind::BufKeyword) {

00588 // Gates like AND/OR/XOR need inputs

00589 spdlog: :warn("Gate type {} requires inputs, but none were provided/derived for output {}",
00590 gateInfo.gateTypeName, gateInfo.outputSignal);

00591 return "/#<Error: Missing Inputs for " + gatelnfo.gateTypeName + ">*/";

00592 }

00593

00594 std::string result = "";

00595

00596 // Use gatelnfo.type (enum) for reliable checking
00597 switch (gateInfo.kind) {
00598 case slang::parsing::TokenKind: :AndKeyword:

00599 result = "(" + inputExprs[0];

00600 for (size_t i = 1; i < inputExprs.size(); ++i)
00601 result += " * " + inputExprs[il; // Use * for AND
00602 result += ")";

00603 break;

00604 case slang::parsing::TokenKind: :NandKeyword:
00605 result = "!(" + inputExprs[0];

00606 for (size_t i = 1; i < inputExprs.size(); ++i)
00607 result += " * " + inputExprs[i];

00608 result += ")";

00609 break;

00610 case slang::parsing::TokenKind: :0rKeyword:

00611 result = "(" + inputExprs[0];

00612 for (size_t i = 1; i < inputExprs.size(); ++i)
00613 result += " + " + inputExprs[il; // Use + for OR
00614 result += ")";

00615 break;

00616 case slang::parsing::TokenKind: :NorKeyword:
00617 result = "!(" + inputExprs[0];

00618 for (size_t i = 1; i < inputExprs.size(); ++i)
00619 result += " + " + inputExprs[il;

00620 result += ")";

00621 break;

00622 case slang::parsing::TokenKind: :XorKeyword:
00623 result = "(" + inputExprs[0];

00624 for (size_t i = 1; i < inputExprs.size(); ++i)
00625 result += " ~ " + inputExprs[il; // Use ~ for XOR
00626 result += ")";

00627 break;

00628 case slang::parsing::TokenKind: :XnorKeyword:
00629 result = "!(" + inputExprs[0];

00630 for (size_t i = 1; i < inputExprs.size(); ++i)
00631 result += " ~ " + inputExprs[i];

00632 result += ")";

00633 break;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

260

File

Documentation

00634
00635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717

case slang::parsing::TokenKind: :NotKeyword: // NOT gate
if (inputExprs.size() != 1) {
spdlog: :warn("NOT gate expects 1 input, got {}", inputExprs.size());
return "/*<Error: Incorrect Inputs for NOT>*/";
}
result = "!" + inputExprs[0]; // Use ! for NOT
break;
case slang::parsing::TokenKind: :BufKeyword: // BUF gate
if (inputExprs.size() != 1) {
spdlog: :warn("BUF gate expects 1 input, got {}", inputExprs.size());
return "/*<Error: Incorrect Inputs for BUF>*/";
}
result = inputExprs[0]; // Output is the same as input
break;
// Add cases for bufifO, bufifl, notifO, notifi, pullup, pulldown, cmos, nmos, pmos, tran etc. if
// needed
default:
spdlog: :warn("Unsupported primitive gate type for logic expression generation: {}",
gateInfo.gateTypeName) ;
result = "/*<Unsupported Gate: " + gateInfo.gateTypeName + ">*/";
break;
}

return result;

// --- New Function Implementation (Step 1: Visit and Print) ---

void extractAndPrintNetlistInfo(const std::string &verilog_file, const std::string &cell) {

spdlog::info("--- Step 1: Starting Netlist Info Extraction ---");
spdlog: :info("Verilog file: '{}', Target cell: '{}'", verilog_file, cell);

try {
auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);
if (!result) { // Check if result is valid
spdlog: :error ("Error parsing Verilog file '{}'. Cannot extract info.", verilog_file);

return;

spdlog: :info("Successfully parsed Verilog file.");

std: :shared_ptr<slang::syntax::SyntaxTree> tree = result.value();

LogicExtractor extractor(cell);

tree->root () .visit(extractor); // Populate extractor's internal state

// --- Print Summary (Debug for Step 1) ---
spdlog::info("--- Extraction Summary for Cell '{}': ---", cell);

const auto &inputs = extractor.getPrimaryInputs();
spdlog: :info("Found {} Primary Inputs:", inputs.size());
for (const auto &name : inputs) {

spdlog::info(" - {}", name);

const auto &outputs = extractor.getPrimaryOutputs();
spdlog: :info("Found {} Primary Outputs:", outputs.size());
for (const auto &name : outputs) {

spdlog::info(" - {}", name);

const auto &wires = extractor.getInternalWires();
spdlog::info("Found {} Internal Wires:", wires.size());
for (const auto &name : wires) {

spdlog::info(" - {}", name);

const auto &gates = extractor.getExtractedGates();
spdlog: :info("Found {} Gate Drivers:", gates.size());
for (const auto &pair : gates) {

const std::string &outputNet = pair.first;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.43 src/main.cpp File Reference 261

00718 const GateInfo &info = pair.second;

00719 std::string inputsStr = "";

00720 for (size_t i = 0; i < info.inputSignals.size(); ++i) {

00721 inputsStr += info.inputSignals[i] + (i == info.inputSignals.size() - 1 7 "" : ", ");
00722 }

00723 spdlog::info(" - Output: {} <= Drivemn by: {} ({}) Inputs: [{}]", outputNet,

00724 info.gateTypeName, slang::parsing::toString(info.kind), inputsStr);
00725 }

00726 spdlog::info("--- End Netlist Info Extraction ---");

00727

00728 } catch (const std::exception &e) {

00729 spdlog: :error ("Exception during Verilog parsing or info extraction: {}", e.what());
00730 } catch (...) {

00731 spdlog: :error ("Unknown exception during Verilog parsing or info extraction.");

00732 }

00733 }

00734

00735 // --- (Step 2: Extract Logic Expressions) ---

00736

00755 std::map<std::string, std::string> extractLogicFromVerilog(const std::string &verilog_file,
00756 const std::string &cell) {
00757 spdlog::info("--- Starting Logic Expression Extraction for cell: '{}' ---", cell);
00758 std::map<std::string, std::string> logicMap; // Default empty map

00759

00760 try {

00761 auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);

00762 if ('result) {

00763 spdlog: :error ("Error parsing Verilog file '{}'. Cannot extract logic.", verilog_file);
00764 return logicMap;

00765 }

00766

00767 spdlog::info("Successfully parsed Verilog file.");

00768 std::shared_ptr<slang::syntax::SyntaxTree> tree = result.value();

00769

00770 LogicExtractor extractor(cell);

00771 tree->root().visit(extractor); // Populate extractor's internal state

00772

00773 // Now, call the method to derive and get the expressions

00774 logicMap = extractor.getLogicExpressions();

00775

00776 } catch (const std::exception &e) {

00777 spdlog: :error ("Exception during Verilog parsing or logic extraction: {}", e.what());
00778 } catch (...) {

00779 spdlog: :error ("Unknown exception during Verilog parsing or logic extraction.");
00780 }

00781

00782 if (logicMap.empty()) {

00783 spdlog: :warn("Logic extraction finished, but no expressions were derived for cell '{}'. Check "
00784 "if cell exists and is correctly defined.",

00785 cell);

00786 } else {

00787 spdlog::info("Logic extraction completed for cell '{}'. Found {} output expression strings",
00788 cell, logicMap.size());

00789 }

00790

00791 spdlog::info("--- End Logic Expression Extraction ---");

00792 return logicMap;

00793 }

7.43 src/main.cpp File Reference

This file contains the main function for the ZlibValidation tool.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

262 File Documentation

#include "CLI/CLI.hpp"
#include "LibFileOperations.hpp"
#include "version.h"

Include dependency graph for main.cpp:

Functions

= int main (int argc, char *argv[])

7.43.1 Detailed Description

This file contains the main function for the ZlibValidation tool.

The ZlibValidation tool is a command-line application that provides several functionalities for processing
and validating Liberty files, including parsing, monotonicity checking, comparison, supercell generation,
Verilog/SPICE netlist generation, functional equivalence check, and a utility to clear generated files. It

uses the CLI11 library for command-line argument parsing and spdlog for logging.

The main function parses command-line arguments using CLI11 to determine the desired operation and
its parameters. It then calls the appropriate functions to perform the requested task. The tool supports
processing multiple Liberty files in parallel using multi-threading for monotonicity checking, supercell

generation, Verilog generation, and SPICE generation.

Parameters

argc | The number of command-line arguments.

argv | An array of command-line argument strings.

Returns

0 if the program executes successfully, or an error code otherwise.

The main function performs the following steps:

1. Initializes command-line argument parsing using CLI11.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.43 src/main.cpp File Reference 263

2. Defines subcommands for each supported operation:

= parse: Parses a Liberty file and writes JSON to a file.

= mono: Checks the monotonicity of timing arc values in a Liberty file.

= compare: Compares two Liberty files and reports differences.

= supercell: Generates supercells for a given Liberty file.

= zlibboost: Runs the ZlibBoost tool for multi-threaded library processing.

= clear: Clears log, JSON, map, markdown, Verilog, and SPICE files in the current directory.
= verilog: Generates Verilog netlist for a given Liberty file.

= spice: Generates SPICE netlist for a given Liberty file.

func: Checks functional equivalence of two Liberty or Verilog files.
3. Parses the command-line arguments using CLI11.
4. Calls the appropriate function based on the selected subcommand.

5. Logs the program's exit status and timestamp.

Note

The tool relies on external libraries such as CLI11, spdlog, and potentially others depending on the
specific operation being performed. Ensure that these libraries are properly installed and configured

before running the tool.

Definition in file main.cpp.

7.43.2 Function Documentation

7.43.2.1 main()

int main (
int argc,

char * argv[])

Definition at line 49 of file main.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

264 File Documentation

Here is the call graph for this function:

LogicComparator-compare
‘SingleExpressionpair

LogicComparator-extract
Venables.

UbraryComparator
comparepin

} LogicCe

[| T

UbraryComparator
‘comparecell

R
T g =
(i |

‘monoCheckLibFile } Libilezmono ‘ } LibFile::checkTimingArcMonotonicity ‘

[eopercaiie | [Ceeioge | [Groupatertoroext |

o] [obrewrmeorrie |

[vertogtorie | [Gorisverios | [Goriessuperce |

[‘spcetore | [Gbriespice | [Goriemoatyspicenetist | »| UbhiesgenersteRcines | [[GbGroup-oetGroups |
(i |

[Ubfilezread | Generaterinjson | [LibGroup-gettype |

generateCeilson

[Govparmoroet |
[Uomirmtersesns |

‘Atribatesiterator
next

UbAttribute: getFioat
Groupsiiertor-end

Attributesiterator-end

7.44 main.cpp

Go to the documentation of this file.

00001 // ./src/main.cpp

00002

00003 #include "CLI/CLI.hpp"

00004

00005 #include "LibFileOperations.hpp"

00006 #include "version.h"

00007

00049 int main(int argc, char *argv[]) {

00050 // Parse command line arguments

00051 std::vector<std::string> library_paths; // Support multiple files
00052 std::string log_file_name = "";

00053

00054 // Command line parameter parsing using CLI11

00055 CLI::App app{APP_NAME};

00056 app.set_version_flag("-v,--version", APP_VERSION);

00057

00058 // Add subcommand for parse mode

00059 CLI::App *parse_cmd =

00060 app.add_subcommand("parse", "Parse the Liberty file and write JSON to a file");
00061 parse_cmd->add_option("library_path", library_paths, "Specify the library file to process")
00062 ->check(CLI: :ExistingFile)

00063 ->required();

00064 parse_cmd->add_option("-1,--log", log_file_name,

00065 "Specify the log file name. Default: <basename>.parse.log");
00066 parse_cmd->callback([&] {

00067 printInfo();

00068 // Check if multi files

00069 if (library_paths.size() > 1) {

00070 spdlog::info("Running sequential parsing for {} files.", library_paths.size());

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.44 main.cpp 265

00071 spdlog::info("Each library will write to its own log file.");
00072 // Sequential parsing

00073 for (const auto &library_path : library_paths) {

00074 parseLibFile(library_path, log_file_name = "");

00075 }

00076 } else {

00077 parseLibFile(library_paths[0], log_file_name);

00078 }

00079 B

00080

00081 // Add subcommand for mono check mode
00082 bool is_slew = false;
00083 CLI::App *mono_cmd = app.add_subcommand("mono", "Check the monotonicity of timing arc values");

00084 mono_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00085 ->check(CLI: :ExistingFile)

00086 ->required();

00087 mono_cmd->add_option("-1,--log", log_file_name,

00088 "Specify the log file name. Default: <basename>.mono.log");

00089 mono_cmd->add_flag("-s,--slew", is_slew,

00090 "Specify that monotonicity checks also include input slew.");

00091 mono_cmd->callback([&] {

00092 printInfo();

00093 // Check if multi files

00094 if (library_paths.size() > 1) {

00095 spdlog: :info("Running multi-threaded monotonicity check for {} files.", library_paths.size());
00096 spdlog: :info("Each thread will write to its own log file.");

00097

00098 // Sequential json file check

00099 for (const auto &library_path : library_paths) {

00100 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +
00101 ".json")) {

00102 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);
00103 parseLibFile(library_path, log_file_name = "");

00104 }

00105 }

00106 spdlog::info("All JSON files prepared.");

00107 // Parallel monotonicity check

00108 std::vector<std::thread> threads;

00109 for (const auto &library_path : library_paths) {

00110 threads.emplace_back(monoCheckLibFile, library_path, log_file_name = "", is_slew);
00111 ¥

00112 for (auto &thread : threads) {

00113 thread. join();

00114 }

00115 spdlog: :info("All threads completed.");

00116 } else {

00117 monoCheckLibFile(library_paths[0], log_file_name, is_slew);

00118 }

00119 });

00120

00121 // Add subcommand for compare mode

00122 std::string ref_lib, comp_lib, report_file_name;

00123 CLI::App *compare_cmd = app.add_subcommand (

00124 "compare", "Compare the comparison library against the reference one and report differences");

00125 compare_cmd->add_option("--ref", ref_lib, "Specify the reference library file")

00126 —->check(CLI::ExistingFile)

00127 ->required();

00128 compare_cmd->add_option("--comp", comp_lib, "Specify the comparison library file")
00129 ->check(CLI: :ExistingFile)

00130 ->required();

00131 double abstol = 0.002;

00132 compare_cmd->add_option("--abstol", abstol,

00133 "Specify the absolute tolerance for comparison. Default: 0.002ns");
00134 double reltol = 0.02;

00135 compare_cmd->add_option("--reltol", reltol,

00136 "Specify the relative tolerance for comparison. Default: 0.02/2.0%");
00137 compare_cmd->add_option("--report", report_file_name,

00138 "Specify the report file name. Default: <comp_lib>.cmp.md");

00139 compare_cmd->callback([&] {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

266

File Documentation

00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208

printInfo();
compareLibFiles(ref_lib, comp_lib, reltol, abstol, report_file_name);

b;

// Add subcommand for supercell generation
int chain_length = 1;
CLI::App *supercell_cmd =
app.add_subcommand ("supercell", "Generate supercells for the given Liberty file");
supercell_cmd->add_option("library_path", library_paths, "Specify the library file to process")
->check(CLI: :ExistingFile)
->required();
supercell_cmd->add_option("-1,--1log", log_file_name,

"Specify the log file name. Default: <basename>.supercell.log");
supercell_cmd->add_option("-c,--chain", chain_length,

"Specify the chain length for supercell generation. Default: 1");
std::vector<std::string> cell_names = {}; // "CMPE42D1" "AN2DO", "DFQD1"
supercell_cmd->add_option("--cells", cell_names,

"Specify the cell names to generate supercells for");
supercell_cmd->callback([&] {

printInfo();
// Check if multi files
if (library_paths.size() > 1) {
spdlog: :info("Running multi-threaded supercell generation for {} files.",
library_paths.size());
spdlog: :info("Each library will write to its own log file.");

// Sequential json file check
for (const auto &library_path : library_paths) {
if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

".json")) {
spdlog: :info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);
parseLibFile(library_path, log_file_name = "");
}

}

spdlog::info("All JSON files prepared.");

// Parallel supercell generation

std::vector<std::thread> threads;

for (const auto &library_path : library_paths) {
threads.emplace_back(supercellLibFile, library_path, log_file_name = "", chain_length,

cell_names);

¥

for (auto &thread : threads) {
thread. join();

}

spdlog::info("All threads completed.");

else {

-

supercellLibFile(library_paths[0], log_file_name, chain_length, cell_names);
}
b;

// Add subcommand for zlibboost
CLI::App *zlibboost_cmd =
app.add_subcommand("zlibboost", "ZlibBoost - Multi-threaded Library Processing Tool");
std::string config_dir = "/home/songzx/Projects/zlibboost/config.tcl";
std::string python_dir = "/home/guocj/anaconda3/envs/myenv/bin/python";
std::string main_py_dir = "/home/songzx/Projects/zlibboost/zlibboost.py";
zlibboost_cmd->add_option(
"-c, --config", config_dir,
"Specify the configuration TCL file. Default: /home/songzx/Projects/zlibboost/config.tcl");
zlibboost_cmd->add_option(
"--python", python_dir,
"Specify the python directory. Default: /home/guocj/anaconda3/envs/myenv/bin/python");
zlibboost_cmd->add_option("--main", main_py_dir,
"Specify the main python script directory. Default: "
"/home/songzx/Projects/zlibboost/zlibboost.py") ;
zlibboost_cmd->callback([&] {
printInfo();
// Run the ZlibBoost tool

std::string command = python_dir + " " + main_py_dir + " -c " + config_dir;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.44 main.cpp 267

00209 spdlog::info("Running ZlibBoost with command: '{}'", command);
00210 int ret = std::system(command.c_str());

00211 if (ret == 0) {

00212 spdlog: :info("ZlibBoost completed successfully.");

00213 } else {

00214 spdlog: :error("ZlibBoost failed with return code: {}", ret);
00215 }

00216 B

00217

00218 // Add subcommand for clear
00219 CLI::App *clear_cmd = app.add_subcommand (

00220 "clear", "Clear the log, JSON, map, markdown, Verilog, SPICE files in this directory");
00221 clear_cmd->callback([&] {

00222 printInfo();

00223 std::filesystem: :path current_dir = std::filesystem::current_path();

00224 for (const auto &entry : std::filesystem::directory_iterator(current_dir)) {
00225 if (entry.path().extension() == ".log" || entry.path().extension() == ".json" ||
00226 entry.path() .extension() == ".map" || entry.path().extension() == ".md" ||
00227 entry.path() .extension() == ".v" || entry.path().extension() == ".spi") {
00228 spdlog: :info("Removing file: '{}'", entry.path().string());

00229 std::filesystem: :remove(entry.path());

00230 }

00231 }

00232 spdlog::info("All log, JSON, map, markdown files cleared.");

00233 B

00234

00235 // Add subcommand for Verilog generation
00236 CLI::App *verilog_cmd =

00237 app.add_subcommand("verilog", "Generate Verilog file for given Liberty file");

00238 verilog_cmd->add_option("library_path", library_paths, "Specify the library file to process")
00239 ->check(CLI: :ExistingFile)

00240 ->required();

00241 verilog_cmd->add_option("-1,--log", log_file_name,

00242 "Specify the log file name. Default: <basename>.verilog.log");

00243 verilog_cmd->add_option("-c,--chain", chain_length,

00244 "Specify the chain length for verilog generation. Default: 1");

00245 verilog_cmd->add_option("--cells", cell_names, "Specify the cell names to generate Verilog for");
00246 verilog_cmd->callback([&] {

00247 printInfo();

00248 // Check if multi files

00249 if (library_paths.size() > 1) {

00250 spdlog: :info("Running multi-threaded Verilog generation for {} files.", library_paths.size());
00251 spdlog::info("Each library will write to its own log file.");

00252

00253 // Sequential json file check

00254 for (const auto &library_path : library_paths) {

00255 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +
00256 ".json")) {

00257 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);
00258 parseLibFile(library_path, log_file_name = "");

00259 }

00260 ¥

00261 spdlog::info("All JSON files prepared.");

00262 // Parallel Verilog generation

00263 std::vector<std::thread> threads;

00264 for (const auto &library_path : library_paths) {

00265 threads.emplace_back(verilogLibFile, library_path, log_file_name = "", chain_length,
00266 cell_names);

00267 }

00268 for (auto &thread : threads) {

00269 thread. join();

00270 }

00271 spdlog::info("All threads completed.");

00272 } else {

00273 verilogLibFile(library_paths[0], log_file_name, chain_length, cell_names);

00274 }

00275 1)

00276

00277 // Add subcommand for SPICE generation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

268

File Documentation

00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346

CLI::App *spice_cmd = app.add_subcommand("spice", "Generate SPICE file for given Liberty file");
spice_cmd->add_option("library_path", library_paths, "Specify the library file to process")
->check(CLI: :ExistingFile)
->required();
spice_cmd->add_option("-1,--log", log_file_name,

"Specify the log file name. Default: <basename>.spice.log");
spice_cmd->add_option("-c,--chain", chain_length,

"Specify the chain length for SPICE generation. Default: 1");
spice_cmd->add_option("--cells", cell_names, "Specify the cell names to generate SPICE for");
std::string verilog_lib_file =

"/home/songzx/examples/mypdk/TSMC65/TSMCE5NM_CLN65LP_STDIO_STDCELL/tcbn651p_220a/"
"0396011_20170308/TSMCHOME/digital/Front_End/verilog/tcbn65lp.v";
std::string spice_lib_file =
"/home/songzx/examples/mypdk/TSMC65/TSMC65NM_CLN65LP_STDIO_STDCELL/tcbn651p_220a/"
"0396011_20170308/TSMCHOME/digital/Back_End/lpe_spice/tcbn651p_200a/tcbn651p_200a_lpe.spi";
spice_cmd->add_option("--v1", verilog_lib_file,

"Specify the location of the Verilog primitive library file");

spice_cmd->add_option(
"--sl", spice_lib_file,
"Specify the location of the SPICE library file to be included in the output");
spice_cmd->callback([&] {
printInfo();
// Check if multi files
if (library_paths.size() > 1) {
spdlog: :info("Running multi-threaded SPICE generation for {} files.", library_paths.size());
spdlog: :info("Each library will write to its own log file.");

// Sequential json file check
for (const auto &library_path : library_paths) {
if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

" json")) {
spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);
parseLibFile(library_path, log_file_name = "");

}

}

spdlog::info("All JSON files prepared.");

// Parallel SPICE generation

std::vector<std::thread> threads;

for (const auto &library_path : library_paths) {
threads.emplace_back(spiceLibFile, library_path, log_file_name = "", chain_length,

cell_names, verilog_lib_file, spice_lib_file);

}

for (auto &thread : threads) {
thread. join();

}

spdlog::info("All threads completed.");

else {

-

spiceLibFile(library_paths[0], log_file_name, chain_length, cell_names, verilog_lib_file,
spice_lib_file);
}
b

// Add subcommand for funtional equivalence check
CLI::App *func_cmd = app.add_subcommand(
"func", "Check functional equivalence of two Liberty files or Verilog files");
std::string ref_file, comp_file;
func_cmd->add_option("--ref", ref_file, "Specify the reference Liberty or Verilog file")
->check(CLI: :ExistingFile)
->required();
func_cmd->add_option("--comp", comp_file, "Specify the comparison Liberty or Verilog file")
->check(CLI: :ExistingFile)
->required();
func_cmd->add_option("--cells", cell_names,
"Specify the cell names to check functional equivalence for");
func_cmd->add_option("--report", report_file_name,

"Specify the report file name. Default: <comp_lib>.cmp.md");

func_cmd->callback([&] {
printInfo();

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.45 src/verilog_utils.cpp File Reference

269

00347 funcLibFile(ref_file, comp_file, cell_names, report_file_name);
00348 1);

00349

00350 CLI11_PARSE(app, argc, argv);

00351

00352 // End of program

00353 char hostname[256] ;

00354 gethostname(hostname, sizeof (hostname));

00355

00356 auto now = std::chrono::system_clock::now();

00357 auto time_now = std::chrono::system_clock::to_time_t (now) ;
00358 std::stringstream ss;

00359 ss << std::put_time(std::localtime(&time_now), "/%c");
00360

00361 spdlog: :info("ZlibValidation exited on '{}' at {}", hostname, ss.str());
00362 return 0;

00363 }

7.45 src/verilog_utils.cpp File Reference

#include "verilog_utils.hpp"

Include dependency graph for verilog_ utils.cpp:

src/verilog_utils.cpp

[veriog.uils e

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h

Functions

= void getAST (const std::string &verilog_file, const std::string &cell)

7.45.1 Function Documentation

7.45.1.1 getAST()

void getAST (
const std::string & wverilog_file,

const std::string & cell)

Definition at line 544 of file verilog_utils.cpp.

spdlog/spdlog.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

270

File Documentation

Here is the call graph for this function:

m CellExtractor::foundTargetCell

7.46 verilog__utils.cpp

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047

// verilog_utils.cpp

#include "verilog_utils.hpp"

// Adding a generic handler method to record all visited nodes and increment the depth counter

void VerilogVisitor::handle(const slang::syntax::SyntaxNode &node) {

std::string indent(depth_ * 2, ' ');
spdlog: :debug("{}Node: {}", indent, slang::syntax::toString(node.kind));
// Increase depth, visit child nodes, then decrease depth
depth_++;
visitDefault (node);
depth_--;
}
// Handle module declarations

void VerilogVisitor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

std::string indent(depth_ * 2, ' ');

if (module.header && module.header->name.valid()) {
std::string_view moduleName = module.header->name.valueText();

spdlog: :debug("{}Module Name:{}", indent, moduleName);

inTargetModule_ = !targetCell_.empty() && moduleName == targetCell_;
if (!inTargetModule_) {

return;

// If a specific module name is specified, check if it matches
if (inTargetModule_) {
spdlog::info("{}Found target module: {}", indent, targetCell_);
// Print the module ports
if (module.header->ports) {
spdlog: :info("{}Ports: {}", indent, module.header->ports->toString());

// Continue processing child nodes
depth_++;

visitDefault (module);

depth_--;

// Handle port declarations
void VerilogVisitor::handle(const slang::syntax::PortDeclarationSyntax &portDecl) {
if (!inTargetModule_) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog__utils.cpp 271

00048 return;

00049 }

00050

00051 std::string indent = std::string(depth_ * 2, ' ');

00052

00053 // Get port direction

00054 std::string direction = "unknown";

00055 if (portDecl.header) {

00056 // Try to convert the header to different types of port headers

00057 if (auto *varPort = portDecl.header->as_if<slang::syntax::VariablePortHeaderSyntax>()) {
00058 if (varPort->direction) {

00059 direction = varPort->direction.valueText();

00060 }

00061 } else if (auto *netPort = portDecl.header->as_if<slang::syntax::NetPortHeaderSyntax>()) {
00062 if (netPort->direction) {

00063 direction = netPort->direction.valueText();

00064 }

00065 }

00066

00067 // Get port name

00068 for (const auto &declarator : portDecl.declarators) {

00069 if (declarator->name.valid()) {

00070 std::string_view portName = declarator->name.valueText();

00071 spdlog: :info("{}Port Name: {} ({})", indent, portName, direction);
00072 }

00073 }

00074 }

00075 }

00076

00077 // Handle hierarchical instantiation (module instance)
00078 void VerilogVisitor::handle(const slang::syntax::HierarchyInstantiationSyntax &hierarchyInst) {
00079 if (linTargetModule_) {

00080 return;

00081 }

00082

00083 std::string indent(depth_ * 2, ' ');

00084

00085 if (hierarchyInst.type.valid()) {

00086 std::string_view instType = hierarchyInst.type.valueText();

00087 spdlog: :info("{}Hierarchy Instance Type: {}", indent, instType);

00088

00089 // Safely print parameter values (if any)

00090 try {

00091 if (hierarchylInst.parameters) {

00092 spdlog::info("{}Parameters:", indent);

00093 for (const auto ¶m : hierarchyInst.parameters->parameters) {

00094 if (!param)

00095 continue; // Null pointer check

00096

00097 if (auto *orderedParam = param->as_if<slang::syntax::0rderedParamAssignmentSyntax>()) {
00098 if (orderedParam->expr) {

00099 spdlog::info("{} Parameter: {}", indent, orderedParam->expr->toString());
00100 }

00101 } else if (auto *namedParam = param->as_if<slang::syntax::NamedParamAssignmentSyntax>()) {
00102 if (namedParam->name.valid() && namedParam->expr) {

00103 spdlog::info("{} Parameter {}: {}", indent, namedParam->name.valueText(),
00104 namedParam->expr->toString());

00105 }

00106 }

00107 ¥

00108 }

00109 } catch (const std::exception &e) {

00110 spdlog: :warn("{}Exception while processing parameters: {}", indent, e.what());
00111 }

00112

00113 // Safely handle instances

00114 try {

00115 for (const auto &instance : hierarchylInst.instances) {

00116 if (linstance) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

272

File

Documentation

00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185

spdlog: :warn("{}Invalid instance", indent);

continue;

[

else if (linstance->decl) {

spdlog: :warn("{}Invalid instance declaration", indent);
// continue;

else {

try {

if (instance->decl->name.valid()) {

w

std::string_view instName = instance->decl->name.valueText();
spdlog: :info("{}Instance Name: {}", indent, instName);
}
} catch (...) {
spdlog: :debug("{}Error printing name", indent);

// Safely print dimensions
try {

if (!instance->decl->dimensions.empty()) {

spdlog::info("{} Dimensions: {}", indent, instance->decl->dimensions.toString());

}
} catch (...) {

spdlog: :debug("{}Error printing dimensions", indent);

// Safely print port connections
spdlog::info("{} Port connections:", indent);
for (const auto &conn : instance->connections) {
if (lconn) {
spdlog: :warn("{} Null connection", indent);

continue; // Null pointer check

try {

// Use as_if method for safe type conversion

if (auto *ordered = conn->as_if<slang::syntax::0OrderedPortConnectionSyntax>()) {

if (ordered->expr) {

spdlog: :info("{} Ordered connection: {}", indent, ordered->expr->toString());
} else {

spdlog: :info("{} Ordered connection: <empty>", indent);
}

} else if (auto *named = conn->as_if<slang::syntax::NamedPortConnectionSyntax>()) {

if (named->name.valid()) {

std::string exprStr = named->expr ? named->expr->toString() : "<empty>";
spdlog: :info ("{} {}({P", indent, named->name.valueText(), exprStr);
}
} else if (conn->as_if<slang::syntax::EmptyPortConnectionSyntax>()) {
spdlog: :info("{} <empty connection>", indent);
} else if (conn->as_if<slang::syntax::WildcardPortConnectionSyntax>()) {
spdlog: :info("{} .*% (wildcard connection)", indent);
} else {

spdlog: :info("{} Unknown connection type: {}", indent,
slang::syntax::toString(conn->kind));
}
} catch (const std::exception &e) {
spdlog: :warn("{}Exception processing connection: {}", indent, e.what());
catch (...) {

-

spdlog: :warn("{}Unknown exception processing connection", indent);

}
} catch (const std::exception &e) {

spdlog: :warn("{}Exception while processing instances: {}", indent, e.what());

// Continue processing child nodes
depth_++;

visitDefault (hierarchyInst);
depth_--;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog__utils.cpp

273

00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254

}

/*

// Handle primitive gate instantiation

void VerilogVisitor::handle(const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst)
if (!inTargetModule_) {

return;

}
std::string indent(depth_ * 2, ' ');

// Get primitive gate type
if (primitiveInst.type.valid()) {
std::string_view gateType = primitivelnst.type.valueText();

spdlog: :info("{}Primitive Gate: {}", indent, gateType);

// Print delay information (if any)

if (primitiveInst.delay) {

spdlog: :info("{}Delay: {}", indent, primitiveInst.delay->toString());
¥

// Print strength information (if any)

if (primitiveInst.strength) {

spdlog: :info("{}Strength: {}", indent, primitiveInst.strength->toString());
¥

// Print each instance

for (const auto &instance : primitivelnst.instances) {

// Primitive gates usually don't have names, but if they do, print them
if (instance->decl && instance->decl->name.valid()) {

std::string_view instName = instance->decl->name.valueText();
spdlog::info("{} Gate instance: {}", indent, instName);

}

// Print connections

spdlog::info("{} Gate connections:", indent);

for (size_t i = 0; i < instance->connections.size(); ++i) {

const auto &conn = instance->connections[i];

// For gate-level instantiation, connections are usually ordered

if (auto *ordered = conn->as_if<slang::syntax::0rderedPortConnectionSyntax>()) {
if (ordered->expr) {

// The first is usually the output, the rest are inputs

std::string portType = (i == 0) ? "output" : "input";

spdlog: :info ("{} {} {}: {}", indent, portType, i, ordered->expr->toString());
¥

}
}
}

// Continue to traverse deeper when specific standard gate type

// Create a set of safe standard gate types

static const std::unordered_set<std::string_view> safeGateTypes = {

"and", "or", "nand", "nor", "xor", "xnor", "not",
"buf", "bufif0", "bufifil", ‘"notif0", "notif1", '“pullup", "pulldown"
"cmos", '"rcmos", "nmos", "pmos", "romos", "rpmos", "tran",

"rtran", "tranifO", "tranifl", "rtranifO", "rtranifi"};

if (safeGateTypes.find(gateType) != safeGateTypes.end()) {

// Continue processing child nodes

depth_++;

visitDefault(primitiveInst);

depth_--;

} else {

spdlog: :warn("{}Skipping deeper traversal of primitive: {}", indent, gateType);
¥

} else {
spdlog: :warn("{}Primitive instantiation missing gate type", indent);

}

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

274

File Documentation

00255 }
00256 */
00257 // Handle specify block

00258 void VerilogVisitor::handle(const slang::syntax::SpecifyBlockSyntax &specifyBlock) {

00259 if (!inTargetModule_) {

00260 return;

00261 }

00262

00263 std::string indent(depth_ * 2, ' ');

00264 spdlog::info("{}Specify Block:", indent);
00265

00266 // Iterate through all path declarations
00267 for (const auto &item : specifyBlock.items) {

00268 if (auto *pathDecl = item->as_if<slang::syntax::PathDeclarationSyntax>()) {
00269 if (pathDecl->desc) {

00270 std::string pathSrc;

00271 std::string pathDst;

00272

00273 // Get path source

00274 if (!pathDecl->desc->inputs.empty()) {

00275 // Get the first input

00276 if (auto *identifier =

00277 pathDecl->desc->inputs[0]->as_if<slang::syntax

00278 if (identifier->identifier.valid()) {

00279 pathSrc = identifier->identifier.valueText();

00280 }

00281 }

00282 ¥

00283

00284 // Get path destination

00285 if (pathDecl->desc->suffix) {

00286 if (auto *simpleSuffix =

00287 pathDecl->desc->suffix->as_if<slang::syntax::SimplePathSuffixSyntax>()) {
00288 if (!simpleSuffix->outputs.empty()) {

00289 if (auto *identifier =

00290 simpleSuffix->outputs[0]->as_if<slang::syntax::IdentifierNameSyntax>()) {
00291 if (identifier->identifier.valid()) {

00292 pathDst = identifier->identifier.valueText();

00293 }

00294 ¥

00295 } else if (auto *edgeSuffix =

00296 pathDecl->desc->suffix

00297 ->as_if<slang::syntax::EdgeSensitivePathSuffixSyntax>()) {
00298 if (ledgeSuffix->outputs.empty()) {

00299 if (auto *identifier =

00300 edgeSuffix->outputs[0]->as_if<slang::syntax::IdentifierNameSyntax>()) {
00301 if (identifier->identifier.valid()) {

00302 pathDst = identifier->identifier.valueText();
00303 }

00304 }

00305 }

00306 }

00307 ¥

00308

00309 // Construct path string

00310 std::string pathStr = pathSrc + " => " + pathDst;

00311

00312 // Get path delay

00313 std::string delayStr = "(";

00314 for (size_t i = 0; i < pathDecl->delays.size(); ++i) {

00315 if (1 > 0)

00316 delayStr += ", ";

00317 delayStr += pathDecl->delays[i]l->toString();

00318 }

00319 delayStr += ")";

00320

00321 spdlog::info("{} Path: {} = {}", indent, pathStr, delayStr);
00322 ¥

00323 }

::IdentifierNameSyntax>()) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog__utils.cpp 275

00324 // Can add handling for ConditionalPathDeclarationSyntax and IfNonePathDeclarationSyntax
00325 else if (auto *condPath = item->as_if<slang::syntax::ConditionalPathDeclarationSyntax>()) {
00326 if (condPath->path && condPath->predicate) {

00327 spdlog::info("{} Conditional Path (if {})", indent, condPath->predicate->toString());
00328 // Recursively handle internal path

00329 handle (*condPath->path) ;

00330 }

00331 } else if (auto *ifNonePath = item->as_if<slang::syntax::IfNonePathDeclarationSyntax>()) {
00332 if (ifNonePath->path) {

00333 spdlog::info("{} If-None Path", indent);

00334 // Recursively handle internal path

00335 handle (*ifNonePath->path) ;

00336 }

00337 }

00338 }

00339

00340 // Continue processing child nodes

00341 depth_++;

00342 visitDefault (specifyBlock) ;

00343 depth_--;

00344 }

00345 }

00346

00347 // Handle module declarations, only keep the target module
00348 void CellExtractor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {
00349 if (module.header && module.header->name.valid()) {

00350 std::string_view moduleName = module.header->name.valueText();
00351

00352 // If it is the target module, mark as found, otherwise remove it
00353 if (!targetCell_.empty() && moduleName == targetCell_) {
00354 foundTarget_ = true;

00355 // Do not modify, keep this module

00356 } else {

00357 // Remove non-target modules

00358 remove (module) ;

00359 }

00360 }

00361 }

00362

00363 // Get result

00364 bool CellExtractor::foundTargetCell()const { return foundTarget_; }

00365

00366 // Handle module declarations

00367 void CellPrinter::handle(const slang::syntax::ModuleDeclarationSyntax &module) {
00368 if (module.header && module.header->name.valid()) {

00369 std::string_view moduleName = module.header->name.valueText();
00370

00371 // Check if it is the target module

00372 if (!targetCell_.empty() && moduleName == targetCell_) {
00373 foundTarget_ = true;

00374

00375 // Print module definition

00376 out_ << "“timescale 1ns/10ps\n";

00377 out_ << module.toString();

00378

00379 return; // Do not traverse further

00380 }

00381 }

00382

00383 // Continue traversing other modules

00384 visitDefault(module);

00385 }

00386

00396 void ModuleRewriter::handle(const slang::syntax::SyntaxNode &node) {

00397 std::string indent(depth_ * 2, ' ');

00398 logger_->debug("{}Node: {}", indent, slang::syntax::toString(node.kind));
00399

00400 // Continue processing child nodes

00401 depth_++;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

276

File Documentation

00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470

visitDefault (node) ;
depth_--;

void ModuleRewriter::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

logger_->debug("Processing module: {}", module.header->name.valueText());

// Create intermediate wires for connections between instances

for (int i = 0; i < instance_count_ - 1; i++) {
auto &newNetNode = parse("\n wire OP_" + std::to_string(i) + ";");
insertAtBack(module.members, newNetNode);

logger_->debug("Added intermediate wire: {}", newNetNode.toString());

// Get critical input port & output port from
// the module name pattern: CELLNAME__X#__CRITICALPORT__OUTPUTPORT
std::string criticallnputPort = "";
std::string criticalOutputPort = "";
if (!this->moduleName_.empty()) {
size_t firstSep = this->moduleName_.find("__");
if (firstSep != std::string::npos) {
size_t secondSep = this->moduleName_.find("__", firstSep + 2);
if (secondSep != std::string::npos) {
size_t thirdSep = this->moduleName_.find("__", secondSep + 2);
if (thirdSep != std::string::npos) {
criticallnputPort = this->moduleName_.substr(secondSep + 2, thirdSep - (secondSep + 2));
criticalOutputPort = this->moduleName_.substr(thirdSep + 2);
logger_->debug("Extracted critical input port: {}", criticallnputPort);
logger_->debug("Extracted output port: {}", criticalOutputPort);
else {

w

logger_->warn("Can't find thirdSep. Invalid module name pattern: {}", this->moduleName_);
return;
}
} else {
logger_->warn("Can't find secondSep. Invalid module name pattern: {}", this->moduleName_);
return;
}
} else {
logger_->warn("Can't find firstSep. Invalid module name pattern: {}", this->moduleName_);
return;
}
} else {
logger_->warn("Module name is empty. Can't extract critical input port.");

return;

// Add additional wires for intermediate outputs that aren't part of the chain
if (this->outputPins_.size() > 1) { // Only add if there are multiple output pins
for (int i = 0; i < instance_count_ - 1; i++) { // Skip the first and last instances
for (const auto &outputPin : this->outputPins_) {
if (outputPin != criticalOutputPort) { // Found an intermediate output pin
auto &newNetNode = parse("\n wire P_" + std::to_string(i) + "__" + outputPin + ";");
insertAtBack (module.members, newNetNode);

logger_->debug("Added intermediate wire: {}", newNetNode.toString());

std::string portList_str = module.header->ports->toString();
logger_->debug("Port list: {}", portList_str);

std::vector<std::string> allPorts;
auto ansiPortList = module.header->ports->as_if<slang::syntax::AnsiPortListSyntax>();
if (lansiPortList) {
logger_->warn("Port list is not ANSI style.");
return;
}
portInfoMap_.clear(); // Clear the port info map

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog__utils.cpp 277

00471 for (const auto portMember : ansiPortList->ports) {

00472 if (portMember->kind == slang::syntax::SyntaxKind::ImplicitAnsiPort) {

00473 const auto implicitPort = portMember->as_if<slang::syntax::ImplicitAnsiPortSyntax>();
00474 const auto &directionToken =

00475 implicitPort->header—->as_if<slang::syntax::VariablePortHeaderSyntax>()->direction;
00476 const auto &nameToken = implicitPort->declarator->name;

00477

00478 std::string_view portName = nameToken.valueText();

00479 std::string_view direction = directionToken.valueText();

00480 portInfoMap_[std::string(portName)] = std::string(direction); // Store port info in the map
00481 logger_->debug("Port Name: {}, Direction: {}", portName, direction);

00482 } else {

00483 logger_->warn("Port member is not ImplicitAnsiPort.");

00484 }

00485 }

00486

00487 for (int i = 0; i < instance_count_; i++) {

00488 std::string instanceName = "I_" + this->cellName_ + "__X" + std::to_string(i) + "__" +
00489 criticallnputPort + "__" + criticalOutputPort;

00490 std::string instanceCode = "\n " + this->cellName_ + " " + instanceName + " (";
00491 std::vector<std::string> portConnections;

00492

00493 for (const auto &pair : portInfoMap_) {

00494 std::string portName = pair.first;

00495 std::string direction = pair.second;

00496 std::string connectionName;

00497

00498 if (portName == criticallnputPort) {

00499 if (1 ==0) {

00500 connectionName = portName; // First instance: connect to module input port
00501 } else {

00502 connectionName =

00503 "OP_" + std::to_string(i - 1); // Intermediate instances: connect to previous OP wire
00504 }

00505 } else if (portName == criticalOutputPort) {

00506 if (i == instance_count_ - 1) {

00507 connectionName = portName; // Last instance: connect to module output port
00508 } else {

00509 connectionName = "OP_" + std::to_string(i); // Intermediate instances: connect to OP wire
00510 }

00511 } else if (direction == "output") { // Handle other output ports

00512 if (i < instance_count_ - 1) {

00513 connectionName = "P_" + std::to_string(i) + "__" +

00514 portName; // Connect to intermediate P_i__portName wire
00515 } else {

00516 connectionName = portName; // Last instance: connect to module output port
00517 }

00518 } else { // For input ports (and inout?), connect directly to module port
00519 connectionName = portName;

00520 }

00521 portConnections.push_back("." + portName + "(" + connectionName + ")");

00522 }

00523

00524 // Connect all ports with comma and space

00525 if (!portConnections.empty()) {

00526 instanceCode += portConnections([0];

00527 for (size_t i = 1; i < portConnections.size(); ++i) {

00528 instanceCode += ", " + portConnections[i];

00529 }

00530 }

00531 instanceCode += ");";

00532

00533 // Blank line before the first instance

00534 if (i ==0) 1

00535 instanceCode = "\n" + instanceCode;

00536 }

00537

00538 // Insert the instance code

00539 auto &instanceNode = parse(instanceCode);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

278

File Documentation

00540
00541
00542 }
00543

insertAtBack(module.members, instanceNode);

00544 void getAST(const std::string &verilog_file, const std::string &cell) {

00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608 }

try {
spdlog::info("Starting get AST from Verilog file: '{}'", verilog_file);
auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);

if (result) {

spdlog::info("Successfully parsed Verilog file.");

try {
// First, use the visitor to print basic information
VerilogVisitor visitor(cell);

visitor.visit(result.value()->root());

// If a target cell is specified, use the rewriter to extract the relevant code
if (lcell.empty()) {

// Create a rewriter to only keep the target cell related code

CellExtractor extractor(cell);

auto extractedTree = extractor.transform(result.value());

if (extractor.foundTargetCell()) {
// Use SyntaxPrinter to print the extracted code

std::string extractedCode = slang::syntax::SyntaxPrinter::printFile(*extractedTree);

// Save to a file named after the cell name
std::string outputFile = cell + ".v";
std::ofstream cellOut(outputFile);
if (cellOut) {
cellOut << extractedCode;
cellOut.close();
spdlog: :info("Extracted '{}' cell code to '{}'", cell, outputFile);
} else {
spdlog::error("Failed to write extracted cell code to '{}'", outputFile);
}
} else {
spdlog: :warn("Target cell '{}' not found in the Verilog file", cell);

// spdlog::info("Print full source code to 'full_source_code.v'");

// // Optionally save the entire syntax tree

// std::string fullOutput = slang::syntax::SyntaxPrinter::printFile(*result.value());
// std::ofstream out("full_source_code.v");

// out << fullOutput;

// out.close();

spdlog::info("Print target cell code to 'cell_code.v using toString()'");
// Use CellPrinter to print the target cell's code

std::ofstream cellOut("cell_code.v");

CellPrinter cellPrinter(cell, cellOut);
cellPrinter.visit(result.value()->root());

cellQut.close();

-

catch (const std::exception &e) {

spdlog: :error("Exception during AST traversal: {}", e.what());

} catch (...) {
spdlog: :error ("Unknown exception during AST traversal");
}
} else {

spdlog: :error ("Error parsing Verilog file.");

} catch (const std::exception &e) {
spdlog: :error ("Exception during Verilog parsing: {}", e.what());
} catch (...) {

spdlog: :error ("Unknown exception during Verilog parsing");

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

]

~Attributeslterator

Attributeslterator, 32
~Groupslterator

Groupslterator, 41
~LibAttribute

LibAttribute, 44
~LibFile

LibFile, 50
~LibGroup

LibGroup, 73
~Valueslterator

Valueslterator, 116

abstol__
LibraryComparator, 84
all_pin_results_
LogicComparator, 95
APP_AUTHOR
version.h, 171
APP_CONTACT
version.h, 171
APP_NAME
version.h, 172
APP_VERSION
version.h, 172
APP_VERSION_MAJOR
version.h, 172
APP_VERSION_MINOR
version.h, 172
APP_VERSION_PATCH
version.h, 172

are_equivalent

PinComparisonResult, 113

attr_
Attributeslterator, 33
LibAttribute, 48

Attributeslterator, 31
~Attributeslterator, 32
attr__, 33
Attributeslterator, 31
attrs__, 33
end, 32
err_, 34
get, 32
next, 33

attrs__

Attributeslterator, 33

basename__
LibFile, 69
bool_
Valueslterator, 118
BUILD_TIMESTAMP
version.h, 173

cell_name__
LogicComparator, 95
CellExtractor, 34
CellExtractor, 35
foundTarget_, 36
foundTargetCell, 36
handle, 36
targetCell_, 36
cellName_
ModuleRewriter, 111
CellPrinter, 37
CellPrinter, 38
foundTarget_, 39
handle, 38
out_, 39
targetCell_, 39
checkTimingArcMonotonicity
LibFile, 51

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

280

#5l

comp__compiles
PinComparisonResult, 113
comp__expr__processed
PinComparisonResult, 113
comp__expr_raw
PinComparisonResult, 114
comp__json__
LibraryComparator, 84
comp_lib_path_
LibraryComparator, 84
comp_outpin_map__
LogicComparator, 95
comp__truth_table
PinComparisonResult, 114
compareCell
LibraryComparator, 78
compareCellLogic
LogicComparator, 86
compareLibFiles
LibFileOperations.cpp, 208
LibFileOperations.hpp, 142
comparelut
LibraryComparator, 79
comparePin
LibraryComparator, 80
compareSingleExpressionPair
LogicComparator, 88
compareTimingArc
LibraryComparator, 81
comparison__possible

PinComparisonResult, 114

depth__
ModuleRewriter, 111
VerilogVisitor, 122
deriveLogicRecursive
LogicExtractor, 98
doc/ChangelLog.md, 125

end
Attributeslterator, 32
Groupslterator, 42
Valueslterator, 117

err_

Attributeslterator, 34
Groupslterator, 43
LibAttribute, 48
LibFile, 69
LibGroup, 75
Valueslterator, 118
error__message
PinComparisonResult, 114
exXprp_
Valueslterator, 118
extractAndPrintNetlistInfo
LogicExtractor.cpp, 250
LogicExtractor.hpp, 164
extractLogicFromVerilog
LogicExtractor.cpp, 251
LogicExtractor.hpp, 165
extractVariables

LogicComparator, 89

filename__
LibFile, 70
filepath_
LibFile, 70
float__
Valueslterator, 118
formatExpression
LogicExtractor, 100
foundTarget__
CellExtractor, 36
CellPrinter, 39
foundTargetCell
CellExtractor, 36
funcLibFile
LibFileOperations.cpp, 209
LibFileOperations.hpp, 144

Gatelnfo, 39
gateTypeName, 40
inputSignals, 40
kind, 40
outputSignal, 40

gateOutputDrivers_
LogicExtractor, 106

gateTypeName

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

#5l

281

Gatelnfo, 40
generateCellJson

json__utils.cpp, 176

json__utils.hpp, 129
generatelLutJson

json__utils.cpp, 177

json__utils.hpp, 130
generatePinJson

json__utils.cpp, 179

json__utils.hpp, 132
generatePowerJson

json__utils.cpp, 182

json__utils.hpp, 135
generateRCLines

LibFile, 52
generateReport

LibraryComparator, 83

LogicComparator, 91
generateTimingJson

json__utils.cpp, 183
get

Attributeslterator, 32

Groupslterator, 42
getAST

verilog__utils.cpp, 269

verilog__utils.hpp, 169
getAttrs

LibGroup, 73
getBoolean

LibAttribute, 45
getExtractedGates

LogicExtractor, 100
getFloat

LibAttribute, 45
getGroups

LibGroup, 73
getint

LibAttribute, 45
getinternalWires

LogicExtractor, 101
getLogicExpressions

LogicExtractor, 101
getName

LibAttribute, 46

LibGroup, 74
getPrimarylnputs

LogicExtractor, 102
getPrimaryOutputs

LogicExtractor, 102
getString

LibAttribute, 46
getType

LibGroup, 74
getValues

LibAttribute, 47
group_

Groupslterator, 43

LibGroup, 75
groups_

Groupslterator, 43
Groupslterator, 41

~Groupslterator, 41

end, 42

err_, 43

get, 42

group_, 43

groups_, 43

Groupslterator, 41

next, 42

handle
CellExtractor, 36
CellPrinter, 38
LogicExtractor, 103-106
ModuleRewriter, 110
VerilogVisitor, 121, 122

include/lterators.hpp, 125, 126
include/json__utils.hpp, 127, 136
include/LibAttribute.hpp, 137, 138
include/LibFile.hpp, 139, 140
include/LibFileOperations.hpp, 141, 156
include/LibGroup.hpp, 157, 158
include/LibraryComparator.hpp, 159, 160
include/LogicComparator.hpp, 161, 162
include/LogicExtractor.hpp, 163, 166
include/verilog__utils.hpp, 168, 169

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

282

#5l

include/version.h, 171, 173
inputPins_

ModuleRewriter, 111
inputSignals

Gatelnfo, 40
instance__count__

ModuleRewriter, 111
int__

Valueslterator, 118
inTargetModule__

LogicExtractor, 106

VerilogVisitor, 123
internalWires__

LogicExtractor, 107
isComplex

LibAttribute, 47
isldentifier

LogicComparator.cpp, 234
isOperator

LogicComparator.cpp, 234

json
json__utils.hpp, 128
LibFile.hpp, 140
LibraryComparator.hpp, 160

json__utils.cpp
generateCellJson, 176
generatelLutJson, 177
generatePinJson, 179
generatePowerJson, 182
generateTimingJson, 183
parseStringToVector, 185

json__utils.hpp
generateCellJson, 129
generatelLutJson, 130
generatePinJson, 132
generatePowerJson, 135
json, 128

jsonname__
LibFile, 70

kind
Gatelnfo, 40

lib_json__

LibFile, 70

LibAttribute, 44

~LibAttribute, 44
attr_, 48

err_, 48
getBoolean, 45
getFloat, 45
getint, 45
getName, 46
getString, 46
getValues, 47
isComplex, 47
LibAttribute, 44

LibFile, 48

~LibFile, 50
basename__, 69

checkTimingArcMonotonicity, 51

err_, 69
filename_, 70
filepath_, 70

generateRCLines, 52
jsonname_, 70
lib_json_, 70
LibFile, 50
libname_, 70
logger_, 71
loggername_, 71
logic, 53

modify, 55
modifySpiceNetlist, 55
mono, 56

parse, 58

process_, 71

read, 61

spice, 62
splitString, 64
supercell, 64
temperature_, 71
verilog, 67
voltage_, 71
writeJsonToFile, 68

LibFile.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

4] 283

json, 140 LibraryComparator.hpp
LibFileOperations.cpp json, 160
compareLibFiles, 208 logger__
funcLibFile, 209 LibFile, 71
monoCheckLibFile, 211 ModuleRewriter, 111
parseLibFile, 213 loggername_
printinfo, 216 LibFile, 71
spicelLibFile, 216 logic
supercellLibFile, 218 LibFile, 53
verilogLibFile, 220 LogicComparator, 93
LibFileOperations.hpp logicCache__
comparelibFiles, 142 LogicExtractor, 107
funcLibFile, 144 LogicComparator, 85
monoCheckLibFile, 146 all_pin_results_, 95
parseLibFile, 147 cell_name_, 95
printInfo, 150 comp_outpin_map_, 95
spicelLibFile, 150 compareCellLogic, 86
supercellLibFile, 152 compareSingleExpressionPair, 88
verilogLibFile, 154 extractVariables, 89
LibGroup, 72 generateReport, 91
~LibGroup, 73 logic, 93
err_, 75 LogicComparator, 86
getAttrs, 73 preprocessExpression, 93
getGroups, 73 ref__outpin_map_, 96
getName, 74 LogicComparator.cpp
getType, 74 isldentifier, 234
group_, 75 isOperator, 234
LibGroup, 72 LogicExtractor, 96
libname__ derivelLogicRecursive, 98
LibFile, 70 formatExpression, 100
LibraryComparator, 75 gateOutputDrivers_, 106
abstol__, 84 getExtractedGates, 100
comp_json_, 84 getInternalWires, 101
comp_lib_path_, 84 getlLogicExpressions, 101
compareCell, 78 getPrimarylnputs, 102
comparelut, 79 getPrimaryOutputs, 102
comparePin, 80 handle, 103-106
compareTimingArc, 81 inTargetModule_, 106
generateReport, 83 internalWires_, 107
LibraryComparator, 77 logicCache_, 107
ref_json_, 84 LogicExtractor, 98
ref_lib_path_, 84 parsingComplete_, 107
reltol_, 85 portDirections_, 107

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

284

#5l

primarylnputs_, 107

primaryOutputs_, 108

targetCell_, 108
LogicExtractor.cpp

extractAndPrintNetlistInfo, 250
extractLogicFromVerilog, 251

LogicExtractor.hpp

extractAndPrintNetlistInfo, 164
extractLogicFromVerilog, 165

main
main.cpp, 263
main.cpp
main, 263
modify
LibFile, 55
modifySpiceNetlist
LibFile, 55
moduleName__
ModuleRewriter, 112
ModuleRewriter, 108
cellName_, 111
depth_, 111
handle, 110
inputPins_, 111
instance_count__, 111
logger_, 111
moduleName__, 112
ModuleRewriter, 110
outputPins_, 112
portinfoMap_, 112
mono
LibFile, 56
monoCheckLibFile
LibFileOperations.cpp, 211
LibFileOperations.hpp, 146

next
Attributeslterator, 33
Groupslterator, 42
Valueslterator, 117

out__
CellPrinter, 39

outputPins__
ModuleRewriter, 112
outputSignal
Gatelnfo, 40

parse
LibFile, 58
parseLibFile
LibFileOperations.cpp, 213
LibFileOperations.hpp, 147
parseString ToVector
json__utils.cpp, 185
parsingComplete__
LogicExtractor, 107
pin_name
PinComparisonResult, 114
PinComparisonResult, 112
are_equivalent, 113
comp_compiles, 113
comp_expr_processed, 113
comp_expr_raw, 114
comp__truth_table, 114
comparison__possible, 114
error__message, 114
pin_name, 114
ref_compiles, 115
ref_expr_processed, 115
ref_expr_raw, 115
ref_truth_table, 115
portDirections_
LogicExtractor, 107
portinfoMap_
ModuleRewriter, 112
preprocessExpression
LogicComparator, 93
primarylnputs_
LogicExtractor, 107
primaryOutputs_
LogicExtractor, 108
printinfo
LibFileOperations.cpp, 216
LibFileOperations.hpp, 150

process__

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

#5l 285
LibFile, 71 supercellLibFile
J LibFileOperations.cpp, 218
red LibFileOperations.hpp, 152
LibFile, 61

README.md, 174
ref_compiles
PinComparisonResult, 115
ref__expr__processed
PinComparisonResult, 115
ref_expr_raw
PinComparisonResult, 115
ref__json__
LibraryComparator, 84
ref_lib_path_
LibraryComparator, 84
ref_outpin_map_
LogicComparator, 96
ref_truth_table
PinComparisonResult, 115
reltol_

LibraryComparator, 85

spice

LibFile, 62
spiceLibFile

LibFileOperations.cpp, 216

LibFileOperations.hpp, 150
splitString

LibFile, 64
src/lterators.cpp, 174
src/json__utils.cpp, 175, 186
src/LibAtrribute.cpp, 189
src/LibFile.cpp, 190
src/LibFileOperations.cpp, 207, 222
src/LibGroup.cpp, 227
src/LibraryComparator.cpp, 228
src/LogicComparator.cpp, 233, 235
src/LogicExtractor.cpp, 250, 252
src/main.cpp, 261, 264
src/verilog__utils.cpp, 269, 270
str_

Valueslterator, 118
supercell

LibFile, 64

targetCell_
CellExtractor, 36
CellPrinter, 39
LogicExtractor, 108
VerilogVisitor, 123
temperature__
LibFile, 71

values__
Valueslterator, 119
Valueslterator, 116
~Valueslterator, 116

bool_, 118
end, 117
err_, 118
exprp_, 118
float_, 118
int_, 118
next, 117
str_, 118

values_, 119

Valueslterator, 116

vtype_, 119
verilog

LibFile, 67
verilog__utils.cpp

getAST, 269
verilog__utils.hpp

getAST, 169
verilogLibFile

LibFileOperations.cpp, 220

LibFileOperations.hpp, 154
VerilogVisitor, 119

depth_, 122

handle, 121, 122

inTargetModule_, 123

targetCell_, 123

VerilogVisitor, 120
version.h

APP_AUTHOR, 171

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

286]

APP_CONTACT, 171
APP_NAME, 172
APP_VERSION, 172
APP_VERSION_MAJOR, 172
APP_VERSION_MINOR, 172
APP_VERSION_PATCH, 172
BUILD_TIMESTAMP, 173
voltage_
LibFile, 71
vtype_
Valueslterator, 119

writeJsonToFile
LibFile, 68

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

	1 ZlibValidation
	1.1 Description
	1.2 Table of Contents
	1.3 Motivation
	1.4 Installation
	1.4.1 Prerequisites
	1.4.2 Optional Pre-requisites
	1.4.3 Building from Source (Recommended Method)
	1.4.4 Running ZlibValidation
	1.4.5 (Optional) Adding to your PATH

	1.5 Help Message / Features
	1.6 Example Usage
	1.7 Documentation and Reference Manual
	1.7.1 Doumentation Generation

	1.8 Acknowledgements
	1.8.1 Core Functionality Libraries:
	1.8.2 Build, Documentation, and External Tools:

	2 Development Diary
	2.1 2025-01
	2.1.1 2025-01-27
	2.1.2 2025-01-28

	2.2 2025-02
	2.2.1 2025-02-01
	2.2.2 2025-02-10
	2.2.3 2025-02-11
	2.2.4 2025-02-14
	2.2.5 2025-02-15
	2.2.6 2025-02-17
	2.2.7 2025-02-18
	2.2.8 2025-02-19
	2.2.9 2025-02-20
	2.2.10 2025-02-25
	2.2.11 2025-02-26
	2.2.12 2025-02-27
	2.2.13 2025-02-28

	2.3 2025-03
	2.3.1 2025-03-01
	2.3.2 2025-03-07
	2.3.3 2025-03-10
	2.3.4 2025-03-14
	2.3.5 2025-03-15
	2.3.6 2025-03-16
	2.3.7 2025-03-17
	2.3.8 2025-03-18
	2.3.9 2025-03-19
	2.3.10 2025-03-21
	2.3.11 2025-03-24
	2.3.12 2025-03-25
	2.3.13 2025-03-26
	2.3.14 2025-03-27
	2.3.15 2025-03-28
	2.3.16 2025-03-29
	2.3.17 2025-03-30
	2.3.18 2025-03-31

	2.4 2025-04
	2.4.1 2025-04-01
	2.4.2 2025-04-02
	2.4.3 2025-04-05
	2.4.4 2025-04-07
	2.4.5 2025-04-10
	2.4.6 2025-04-15

	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 File Index
	5.1 File List

	6 Class Documentation
	6.1 AttributesIterator Class Reference
	6.1.1 Detailed Description
	6.1.2 Constructor & Destructor Documentation
	6.1.2.1 AttributesIterator()
	6.1.2.2 AttributesIterator()

	6.1.3 Member Function Documentation
	6.1.3.1 end()
	6.1.3.2 get()
	6.1.3.3 next()

	6.1.4 Member Data Documentation
	6.1.4.1 attr_
	6.1.4.2 attrs_
	6.1.4.3 err_

	6.2 CellExtractor Class Reference
	6.2.1 Detailed Description
	6.2.2 Constructor & Destructor Documentation
	6.2.2.1 CellExtractor()

	6.2.3 Member Function Documentation
	6.2.3.1 foundTargetCell()
	6.2.3.2 handle()

	6.2.4 Member Data Documentation
	6.2.4.1 foundTarget_
	6.2.4.2 targetCell_

	6.3 CellPrinter Class Reference
	6.3.1 Detailed Description
	6.3.2 Constructor & Destructor Documentation
	6.3.2.1 CellPrinter()

	6.3.3 Member Function Documentation
	6.3.3.1 handle()

	6.3.4 Member Data Documentation
	6.3.4.1 foundTarget_
	6.3.4.2 out_
	6.3.4.3 targetCell_

	6.4 GateInfo Struct Reference
	6.4.1 Detailed Description
	6.4.2 Member Data Documentation
	6.4.2.1 gateTypeName
	6.4.2.2 inputSignals
	6.4.2.3 kind
	6.4.2.4 outputSignal

	6.5 GroupsIterator Class Reference
	6.5.1 Detailed Description
	6.5.2 Constructor & Destructor Documentation
	6.5.2.1 GroupsIterator()
	6.5.2.2 GroupsIterator()

	6.5.3 Member Function Documentation
	6.5.3.1 end()
	6.5.3.2 get()
	6.5.3.3 next()

	6.5.4 Member Data Documentation
	6.5.4.1 err_
	6.5.4.2 group_
	6.5.4.3 groups_

	6.6 LibAttribute Class Reference
	6.6.1 Detailed Description
	6.6.2 Constructor & Destructor Documentation
	6.6.2.1 LibAttribute()
	6.6.2.2 LibAttribute()

	6.6.3 Member Function Documentation
	6.6.3.1 getBoolean()
	6.6.3.2 getFloat()
	6.6.3.3 getInt()
	6.6.3.4 getName()
	6.6.3.5 getString()
	6.6.3.6 getValues()
	6.6.3.7 isComplex()

	6.6.4 Member Data Documentation
	6.6.4.1 attr_
	6.6.4.2 err_

	6.7 LibFile Class Reference
	6.7.1 Detailed Description
	6.7.2 Constructor & Destructor Documentation
	6.7.2.1 LibFile()
	6.7.2.2 LibFile()

	6.7.3 Member Function Documentation
	6.7.3.1 checkTimingArcMonotonicity()
	6.7.3.2 generateRCLines()
	6.7.3.3 logic()
	6.7.3.4 modify()
	6.7.3.5 modifySpiceNetlist()
	6.7.3.6 mono()
	6.7.3.7 parse()
	6.7.3.8 read()
	6.7.3.9 spice()
	6.7.3.10 splitString()
	6.7.3.11 supercell()
	6.7.3.12 verilog()
	6.7.3.13 writeJsonToFile()

	6.7.4 Member Data Documentation
	6.7.4.1 basename_
	6.7.4.2 err_
	6.7.4.3 filename_
	6.7.4.4 filepath_
	6.7.4.5 jsonname_
	6.7.4.6 lib_json_
	6.7.4.7 libname_
	6.7.4.8 logger_
	6.7.4.9 loggername_
	6.7.4.10 process_
	6.7.4.11 temperature_
	6.7.4.12 voltage_

	6.8 LibGroup Class Reference
	6.8.1 Detailed Description
	6.8.2 Constructor & Destructor Documentation
	6.8.2.1 LibGroup()
	6.8.2.2 LibGroup()

	6.8.3 Member Function Documentation
	6.8.3.1 getAttrs()
	6.8.3.2 getGroups()
	6.8.3.3 getName()
	6.8.3.4 getType()

	6.8.4 Member Data Documentation
	6.8.4.1 err_
	6.8.4.2 group_

	6.9 LibraryComparator Class Reference
	6.9.1 Detailed Description
	6.9.2 Constructor & Destructor Documentation
	6.9.2.1 LibraryComparator()

	6.9.3 Member Function Documentation
	6.9.3.1 compareCell()
	6.9.3.2 compareLut()
	6.9.3.3 comparePin()
	6.9.3.4 compareTimingArc()
	6.9.3.5 generateReport()

	6.9.4 Member Data Documentation
	6.9.4.1 abstol_
	6.9.4.2 comp_json_
	6.9.4.3 comp_lib_path_
	6.9.4.4 ref_json_
	6.9.4.5 ref_lib_path_
	6.9.4.6 reltol_

	6.10 LogicComparator Class Reference
	6.10.1 Detailed Description
	6.10.2 Constructor & Destructor Documentation
	6.10.2.1 LogicComparator()

	6.10.3 Member Function Documentation
	6.10.3.1 compareCellLogic()
	6.10.3.2 compareSingleExpressionPair()
	6.10.3.3 extractVariables()
	6.10.3.4 generateReport()
	6.10.3.5 logic()
	6.10.3.6 preprocessExpression()

	6.10.4 Member Data Documentation
	6.10.4.1 all_pin_results_
	6.10.4.2 cell_name_
	6.10.4.3 comp_outpin_map_
	6.10.4.4 ref_outpin_map_

	6.11 LogicExtractor Class Reference
	6.11.1 Detailed Description
	6.11.2 Constructor & Destructor Documentation
	6.11.2.1 LogicExtractor()

	6.11.3 Member Function Documentation
	6.11.3.1 deriveLogicRecursive()
	6.11.3.2 formatExpression()
	6.11.3.3 getExtractedGates()
	6.11.3.4 getInternalWires()
	6.11.3.5 getLogicExpressions()
	6.11.3.6 getPrimaryInputs()
	6.11.3.7 getPrimaryOutputs()
	6.11.3.8 handle() [1/5]
	6.11.3.9 handle() [2/5]
	6.11.3.10 handle() [3/5]
	6.11.3.11 handle() [4/5]
	6.11.3.12 handle() [5/5]

	6.11.4 Member Data Documentation
	6.11.4.1 gateOutputDrivers_
	6.11.4.2 inTargetModule_
	6.11.4.3 internalWires_
	6.11.4.4 logicCache_
	6.11.4.5 parsingComplete_
	6.11.4.6 portDirections_
	6.11.4.7 primaryInputs_
	6.11.4.8 primaryOutputs_
	6.11.4.9 targetCell_

	6.12 ModuleRewriter Class Reference
	6.12.1 Detailed Description
	6.12.2 Constructor & Destructor Documentation
	6.12.2.1 ModuleRewriter()

	6.12.3 Member Function Documentation
	6.12.3.1 handle() [1/2]
	6.12.3.2 handle() [2/2]

	6.12.4 Member Data Documentation
	6.12.4.1 cellName_
	6.12.4.2 depth_
	6.12.4.3 inputPins_
	6.12.4.4 instance_count_
	6.12.4.5 logger_
	6.12.4.6 moduleName_
	6.12.4.7 outputPins_
	6.12.4.8 portInfoMap_

	6.13 PinComparisonResult Struct Reference
	6.13.1 Detailed Description
	6.13.2 Member Data Documentation
	6.13.2.1 are_equivalent
	6.13.2.2 comp_compiles
	6.13.2.3 comp_expr_processed
	6.13.2.4 comp_expr_raw
	6.13.2.5 comp_truth_table
	6.13.2.6 comparison_possible
	6.13.2.7 error_message
	6.13.2.8 pin_name
	6.13.2.9 ref_compiles
	6.13.2.10 ref_expr_processed
	6.13.2.11 ref_expr_raw
	6.13.2.12 ref_truth_table

	6.14 ValuesIterator Class Reference
	6.14.1 Detailed Description
	6.14.2 Constructor & Destructor Documentation
	6.14.2.1 ValuesIterator()
	6.14.2.2 ValuesIterator()

	6.14.3 Member Function Documentation
	6.14.3.1 end()
	6.14.3.2 next()

	6.14.4 Member Data Documentation
	6.14.4.1 bool_
	6.14.4.2 err_
	6.14.4.3 exprp_
	6.14.4.4 float_
	6.14.4.5 int_
	6.14.4.6 str_
	6.14.4.7 values_
	6.14.4.8 vtype_

	6.15 VerilogVisitor Class Reference
	6.15.1 Detailed Description
	6.15.2 Constructor & Destructor Documentation
	6.15.2.1 VerilogVisitor()

	6.15.3 Member Function Documentation
	6.15.3.1 handle() [1/5]
	6.15.3.2 handle() [2/5]
	6.15.3.3 handle() [3/5]
	6.15.3.4 handle() [4/5]
	6.15.3.5 handle() [5/5]

	6.15.4 Member Data Documentation
	6.15.4.1 depth_
	6.15.4.2 inTargetModule_
	6.15.4.3 targetCell_

	7 File Documentation
	7.1 doc/ChangeLog.md File Reference
	7.2 include/Iterators.hpp File Reference
	7.3 Iterators.hpp
	7.4 include/json_utils.hpp File Reference
	7.4.1 Typedef Documentation
	7.4.1.1 json

	7.4.2 Function Documentation
	7.4.2.1 generateCellJson()
	7.4.2.2 generateLutJson()
	7.4.2.3 generatePinJson()
	7.4.2.4 generatePowerJson()

	7.5 json_utils.hpp
	7.6 include/LibAttribute.hpp File Reference
	7.7 LibAttribute.hpp
	7.8 include/LibFile.hpp File Reference
	7.8.1 Typedef Documentation
	7.8.1.1 json

	7.9 LibFile.hpp
	7.10 include/LibFileOperations.hpp File Reference
	7.10.1 Function Documentation
	7.10.1.1 compareLibFiles()
	7.10.1.2 funcLibFile()
	7.10.1.3 monoCheckLibFile()
	7.10.1.4 parseLibFile()
	7.10.1.5 printInfo()
	7.10.1.6 spiceLibFile()
	7.10.1.7 supercellLibFile()
	7.10.1.8 verilogLibFile()

	7.11 LibFileOperations.hpp
	7.12 include/LibGroup.hpp File Reference
	7.13 LibGroup.hpp
	7.14 include/LibraryComparator.hpp File Reference
	7.14.1 Typedef Documentation
	7.14.1.1 json

	7.15 LibraryComparator.hpp
	7.16 include/LogicComparator.hpp File Reference
	7.17 LogicComparator.hpp
	7.18 include/LogicExtractor.hpp File Reference
	7.18.1 Function Documentation
	7.18.1.1 extractAndPrintNetlistInfo()
	7.18.1.2 extractLogicFromVerilog()

	7.19 LogicExtractor.hpp
	7.20 include/verilog_utils.hpp File Reference
	7.20.1 Function Documentation
	7.20.1.1 getAST()

	7.21 verilog_utils.hpp
	7.22 include/version.h File Reference
	7.22.1 Macro Definition Documentation
	7.22.1.1 APP_AUTHOR
	7.22.1.2 APP_CONTACT
	7.22.1.3 APP_NAME
	7.22.1.4 APP_VERSION
	7.22.1.5 APP_VERSION_MAJOR
	7.22.1.6 APP_VERSION_MINOR
	7.22.1.7 APP_VERSION_PATCH
	7.22.1.8 BUILD_TIMESTAMP

	7.23 version.h
	7.24 README.md File Reference
	7.25 src/Iterators.cpp File Reference
	7.26 Iterators.cpp
	7.27 src/json_utils.cpp File Reference
	7.27.1 Function Documentation
	7.27.1.1 generateCellJson()
	7.27.1.2 generateLutJson()
	7.27.1.3 generatePinJson()
	7.27.1.4 generatePowerJson()
	7.27.1.5 generateTimingJson()
	7.27.1.6 parseStringToVector()

	7.28 json_utils.cpp
	7.29 src/LibAtrribute.cpp File Reference
	7.30 LibAtrribute.cpp
	7.31 src/LibFile.cpp File Reference
	7.32 LibFile.cpp
	7.33 src/LibFileOperations.cpp File Reference
	7.33.1 Function Documentation
	7.33.1.1 compareLibFiles()
	7.33.1.2 funcLibFile()
	7.33.1.3 monoCheckLibFile()
	7.33.1.4 parseLibFile()
	7.33.1.5 printInfo()
	7.33.1.6 spiceLibFile()
	7.33.1.7 supercellLibFile()
	7.33.1.8 verilogLibFile()

	7.34 LibFileOperations.cpp
	7.35 src/LibGroup.cpp File Reference
	7.36 LibGroup.cpp
	7.37 src/LibraryComparator.cpp File Reference
	7.38 LibraryComparator.cpp
	7.39 src/LogicComparator.cpp File Reference
	7.39.1 Function Documentation
	7.39.1.1 isIdentifier()
	7.39.1.2 isOperator()

	7.40 LogicComparator.cpp
	7.41 src/LogicExtractor.cpp File Reference
	7.41.1 Function Documentation
	7.41.1.1 extractAndPrintNetlistInfo()
	7.41.1.2 extractLogicFromVerilog()

	7.42 LogicExtractor.cpp
	7.43 src/main.cpp File Reference
	7.43.1 Detailed Description
	7.43.2 Function Documentation
	7.43.2.1 main()

	7.44 main.cpp
	7.45 src/verilog_utils.cpp File Reference
	7.45.1 Function Documentation
	7.45.1.1 getAST()

	7.46 verilog_utils.cpp

	索引

