
ZlibValidation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen 1.9.5

Tue Apr 15 2025 20:55:05

i

1 ZlibValidation 1

1.1 Description . 1

1.2 Table of Contents . 1

1.3 Motivation . 2

1.4 Installation . 2

1.4.1 Prerequisites . 2

1.4.2 Optional Pre-requisites . 2

1.4.3 Building from Source (Recommended Method) . 3

1.4.4 Running ZlibValidation . 3

1.4.5 (Optional) Adding to your PATH . 3

1.5 Help Message / Features . 4

1.6 Example Usage . 4

1.7 Documentation and Reference Manual . 4

1.7.1 Doumentation Generation . 4

1.8 Acknowledgements . 4

1.8.1 Core Functionality Libraries: . 5

1.8.2 Build, Documentation, and External Tools: . 6

2 Development Diary 7

2.1 2025-01 . 7

2.1.1 2025-01-27 . 7

2.1.2 2025-01-28 . 7

2.2 2025-02 . 8

2.2.1 2025-02-01 . 8

2.2.2 2025-02-10 . 8

2.2.3 2025-02-11 . 8

2.2.4 2025-02-14 . 8

2.2.5 2025-02-15 . 9

2.2.6 2025-02-17 . 9

2.2.7 2025-02-18 . 9

2.2.8 2025-02-19 . 9

2.2.9 2025-02-20 . 9

2.2.10 2025-02-25 . 10

2.2.11 2025-02-26 . 10

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

ii

2.2.12 2025-02-27 . 10

2.2.13 2025-02-28 . 10

2.3 2025-03 . 11

2.3.1 2025-03-01 . 11

2.3.2 2025-03-07 . 11

2.3.3 2025-03-10 . 11

2.3.4 2025-03-14 . 11

2.3.5 2025-03-15 . 12

2.3.6 2025-03-16 . 12

2.3.7 2025-03-17 . 13

2.3.8 2025-03-18 . 13

2.3.9 2025-03-19 . 14

2.3.10 2025-03-21 . 14

2.3.11 2025-03-24 . 14

2.3.12 2025-03-25 . 14

2.3.13 2025-03-26 . 15

2.3.14 2025-03-27 . 15

2.3.15 2025-03-28 . 16

2.3.16 2025-03-29 . 17

2.3.17 2025-03-30 . 17

2.3.18 2025-03-31 . 18

2.4 2025-04 . 19

2.4.1 2025-04-01 . 19

2.4.2 2025-04-02 . 21

2.4.3 2025-04-05 . 22

2.4.4 2025-04-07 . 23

2.4.5 2025-04-10 . 23

2.4.6 2025-04-15 . 23

3 Hierarchical Index 25

3.1 Class Hierarchy . 25

4 Class Index 27

4.1 Class List . 27

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

iii

5 File Index 29

5.1 File List . 29

6 Class Documentation 31

6.1 AttributesIterator Class Reference . 31

6.1.1 Detailed Description . 31

6.1.2 Constructor & Destructor Documentation . 31

6.1.2.1 AttributesIterator() . 32

6.1.2.2 ∼AttributesIterator() . 32

6.1.3 Member Function Documentation . 32

6.1.3.1 end() . 32

6.1.3.2 get() . 33

6.1.3.3 next() . 33

6.1.4 Member Data Documentation . 33

6.1.4.1 attr_ . 33

6.1.4.2 attrs_ . 34

6.1.4.3 err_ . 34

6.2 CellExtractor Class Reference . 34

6.2.1 Detailed Description . 35

6.2.2 Constructor & Destructor Documentation . 35

6.2.2.1 CellExtractor() . 35

6.2.3 Member Function Documentation . 36

6.2.3.1 foundTargetCell() . 36

6.2.3.2 handle() . 36

6.2.4 Member Data Documentation . 36

6.2.4.1 foundTarget_ . 36

6.2.4.2 targetCell_ . 37

6.3 CellPrinter Class Reference . 37

6.3.1 Detailed Description . 38

6.3.2 Constructor & Destructor Documentation . 38

6.3.2.1 CellPrinter() . 38

6.3.3 Member Function Documentation . 38

6.3.3.1 handle() . 38

6.3.4 Member Data Documentation . 39

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

iv

6.3.4.1 foundTarget_ . 39

6.3.4.2 out_ . 39

6.3.4.3 targetCell_ . 39

6.4 GateInfo Struct Reference . 39

6.4.1 Detailed Description . 40

6.4.2 Member Data Documentation . 40

6.4.2.1 gateTypeName . 40

6.4.2.2 inputSignals . 40

6.4.2.3 kind . 40

6.4.2.4 outputSignal . 40

6.5 GroupsIterator Class Reference . 41

6.5.1 Detailed Description . 41

6.5.2 Constructor & Destructor Documentation . 41

6.5.2.1 GroupsIterator() . 41

6.5.2.2 ∼GroupsIterator() . 41

6.5.3 Member Function Documentation . 42

6.5.3.1 end() . 42

6.5.3.2 get() . 42

6.5.3.3 next() . 43

6.5.4 Member Data Documentation . 43

6.5.4.1 err_ . 43

6.5.4.2 group_ . 43

6.5.4.3 groups_ . 43

6.6 LibAttribute Class Reference . 44

6.6.1 Detailed Description . 44

6.6.2 Constructor & Destructor Documentation . 44

6.6.2.1 LibAttribute() . 44

6.6.2.2 ∼LibAttribute() . 45

6.6.3 Member Function Documentation . 45

6.6.3.1 getBoolean() . 45

6.6.3.2 getFloat() . 45

6.6.3.3 getInt() . 46

6.6.3.4 getName() . 46

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

v

6.6.3.5 getString() . 47

6.6.3.6 getValues() . 47

6.6.3.7 isComplex() . 47

6.6.4 Member Data Documentation . 48

6.6.4.1 attr_ . 48

6.6.4.2 err_ . 48

6.7 LibFile Class Reference . 48

6.7.1 Detailed Description . 50

6.7.2 Constructor & Destructor Documentation . 50

6.7.2.1 LibFile() . 50

6.7.2.2 ∼LibFile() . 50

6.7.3 Member Function Documentation . 51

6.7.3.1 checkTimingArcMonotonicity() . 51

6.7.3.2 generateRCLines() . 52

6.7.3.3 logic() . 53

6.7.3.4 modify() . 55

6.7.3.5 modifySpiceNetlist() . 55

6.7.3.6 mono() . 57

6.7.3.7 parse() . 59

6.7.3.8 read() . 61

6.7.3.9 spice() . 62

6.7.3.10 splitString() . 64

6.7.3.11 supercell() . 65

6.7.3.12 verilog() . 67

6.7.3.13 writeJsonToFile() . 69

6.7.4 Member Data Documentation . 69

6.7.4.1 basename_ . 69

6.7.4.2 err_ . 70

6.7.4.3 filename_ . 70

6.7.4.4 filepath_ . 70

6.7.4.5 jsonname_ . 70

6.7.4.6 lib_json_ . 70

6.7.4.7 libname_ . 71

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

vi

6.7.4.8 logger_ . 71

6.7.4.9 loggername_ . 71

6.7.4.10 process_ . 71

6.7.4.11 temperature_ . 71

6.7.4.12 voltage_ . 72

6.8 LibGroup Class Reference . 72

6.8.1 Detailed Description . 72

6.8.2 Constructor & Destructor Documentation . 72

6.8.2.1 LibGroup() . 73

6.8.2.2 ∼LibGroup() . 73

6.8.3 Member Function Documentation . 73

6.8.3.1 getAttrs() . 73

6.8.3.2 getGroups() . 74

6.8.3.3 getName() . 74

6.8.3.4 getType() . 75

6.8.4 Member Data Documentation . 75

6.8.4.1 err_ . 75

6.8.4.2 group_ . 75

6.9 LibraryComparator Class Reference . 75

6.9.1 Detailed Description . 76

6.9.2 Constructor & Destructor Documentation . 77

6.9.2.1 LibraryComparator() . 77

6.9.3 Member Function Documentation . 78

6.9.3.1 compareCell() . 78

6.9.3.2 compareLut() . 79

6.9.3.3 comparePin() . 81

6.9.3.4 compareTimingArc() . 82

6.9.3.5 generateReport() . 83

6.9.4 Member Data Documentation . 84

6.9.4.1 abstol_ . 84

6.9.4.2 comp_json_ . 84

6.9.4.3 comp_lib_path_ . 84

6.9.4.4 ref_json_ . 84

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

vii

6.9.4.5 ref_lib_path_ . 85

6.9.4.6 reltol_ . 85

6.10 LogicComparator Class Reference . 85

6.10.1 Detailed Description . 86

6.10.2 Constructor & Destructor Documentation . 86

6.10.2.1 LogicComparator() . 86

6.10.3 Member Function Documentation . 86

6.10.3.1 compareCellLogic() . 86

6.10.3.2 compareSingleExpressionPair() . 88

6.10.3.3 extractVariables() . 90

6.10.3.4 generateReport() . 91

6.10.3.5 logic() . 93

6.10.3.6 preprocessExpression() . 94

6.10.4 Member Data Documentation . 95

6.10.4.1 all_pin_results_ . 95

6.10.4.2 cell_name_ . 95

6.10.4.3 comp_outpin_map_ . 96

6.10.4.4 ref_outpin_map_ . 96

6.11 LogicExtractor Class Reference . 96

6.11.1 Detailed Description . 98

6.11.2 Constructor & Destructor Documentation . 98

6.11.2.1 LogicExtractor() . 98

6.11.3 Member Function Documentation . 98

6.11.3.1 deriveLogicRecursive() . 98

6.11.3.2 formatExpression() . 100

6.11.3.3 getExtractedGates() . 101

6.11.3.4 getInternalWires() . 101

6.11.3.5 getLogicExpressions() . 101

6.11.3.6 getPrimaryInputs() . 102

6.11.3.7 getPrimaryOutputs() . 103

6.11.3.8 handle() [1/5] . 103

6.11.3.9 handle() [2/5] . 103

6.11.3.10 handle() [3/5] . 104

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

viii

6.11.3.11 handle() [4/5] . 105

6.11.3.12 handle() [5/5] . 106

6.11.4 Member Data Documentation . 106

6.11.4.1 gateOutputDrivers_ . 106

6.11.4.2 inTargetModule_ . 107

6.11.4.3 internalWires_ . 107

6.11.4.4 logicCache_ . 107

6.11.4.5 parsingComplete_ . 107

6.11.4.6 portDirections_ . 107

6.11.4.7 primaryInputs_ . 108

6.11.4.8 primaryOutputs_ . 108

6.11.4.9 targetCell_ . 108

6.12 ModuleRewriter Class Reference . 108

6.12.1 Detailed Description . 109

6.12.2 Constructor & Destructor Documentation . 110

6.12.2.1 ModuleRewriter() . 110

6.12.3 Member Function Documentation . 110

6.12.3.1 handle() [1/2] . 110

6.12.3.2 handle() [2/2] . 110

6.12.4 Member Data Documentation . 111

6.12.4.1 cellName_ . 111

6.12.4.2 depth_ . 111

6.12.4.3 inputPins_ . 111

6.12.4.4 instance_count_ . 111

6.12.4.5 logger_ . 112

6.12.4.6 moduleName_ . 112

6.12.4.7 outputPins_ . 112

6.12.4.8 portInfoMap_ . 112

6.13 PinComparisonResult Struct Reference . 112

6.13.1 Detailed Description . 113

6.13.2 Member Data Documentation . 113

6.13.2.1 are_equivalent . 113

6.13.2.2 comp_compiles . 113

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

ix

6.13.2.3 comp_expr_processed . 114

6.13.2.4 comp_expr_raw . 114

6.13.2.5 comp_truth_table . 114

6.13.2.6 comparison_possible . 114

6.13.2.7 error_message . 114

6.13.2.8 pin_name . 115

6.13.2.9 ref_compiles . 115

6.13.2.10 ref_expr_processed . 115

6.13.2.11 ref_expr_raw . 115

6.13.2.12 ref_truth_table . 115

6.14 ValuesIterator Class Reference . 116

6.14.1 Detailed Description . 116

6.14.2 Constructor & Destructor Documentation . 116

6.14.2.1 ValuesIterator() . 116

6.14.2.2 ∼ValuesIterator() . 117

6.14.3 Member Function Documentation . 117

6.14.3.1 end() . 117

6.14.3.2 next() . 117

6.14.4 Member Data Documentation . 118

6.14.4.1 bool_ . 118

6.14.4.2 err_ . 118

6.14.4.3 exprp_ . 118

6.14.4.4 float_ . 118

6.14.4.5 int_ . 118

6.14.4.6 str_ . 119

6.14.4.7 values_ . 119

6.14.4.8 vtype_ . 119

6.15 VerilogVisitor Class Reference . 119

6.15.1 Detailed Description . 120

6.15.2 Constructor & Destructor Documentation . 120

6.15.2.1 VerilogVisitor() . 121

6.15.3 Member Function Documentation . 121

6.15.3.1 handle() [1/5] . 121

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

x

6.15.3.2 handle() [2/5] . 121

6.15.3.3 handle() [3/5] . 121

6.15.3.4 handle() [4/5] . 122

6.15.3.5 handle() [5/5] . 122

6.15.4 Member Data Documentation . 122

6.15.4.1 depth_ . 123

6.15.4.2 inTargetModule_ . 123

6.15.4.3 targetCell_ . 123

7 File Documentation 125

7.1 doc/ChangeLog.md File Reference . 125

7.2 include/Iterators.hpp File Reference . 125

7.3 Iterators.hpp . 126

7.4 include/json_utils.hpp File Reference . 127

7.4.1 Typedef Documentation . 128

7.4.1.1 json . 128

7.4.2 Function Documentation . 129

7.4.2.1 generateCellJson() . 129

7.4.2.2 generateLutJson() . 131

7.4.2.3 generatePinJson() . 132

7.4.2.4 generatePowerJson() . 135

7.5 json_utils.hpp . 136

7.6 include/LibAttribute.hpp File Reference . 137

7.7 LibAttribute.hpp . 138

7.8 include/LibFile.hpp File Reference . 139

7.8.1 Typedef Documentation . 140

7.8.1.1 json . 140

7.9 LibFile.hpp . 140

7.10 include/LibFileOperations.hpp File Reference . 141

7.10.1 Function Documentation . 142

7.10.1.1 compareLibFiles() . 143

7.10.1.2 funcLibFile() . 144

7.10.1.3 monoCheckLibFile() . 146

7.10.1.4 parseLibFile() . 148

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

xi

7.10.1.5 printInfo() . 150

7.10.1.6 spiceLibFile() . 151

7.10.1.7 supercellLibFile() . 152

7.10.1.8 verilogLibFile() . 155

7.11 LibFileOperations.hpp . 156

7.12 include/LibGroup.hpp File Reference . 157

7.13 LibGroup.hpp . 158

7.14 include/LibraryComparator.hpp File Reference . 159

7.14.1 Typedef Documentation . 160

7.14.1.1 json . 160

7.15 LibraryComparator.hpp . 160

7.16 include/LogicComparator.hpp File Reference . 161

7.17 LogicComparator.hpp . 162

7.18 include/LogicExtractor.hpp File Reference . 163

7.18.1 Function Documentation . 164

7.18.1.1 extractAndPrintNetlistInfo() . 164

7.18.1.2 extractLogicFromVerilog() . 165

7.19 LogicExtractor.hpp . 166

7.20 include/verilog_utils.hpp File Reference . 168

7.20.1 Function Documentation . 169

7.20.1.1 getAST() . 169

7.21 verilog_utils.hpp . 169

7.22 include/version.h File Reference . 171

7.22.1 Macro Definition Documentation . 171

7.22.1.1 APP_AUTHOR . 171

7.22.1.2 APP_CONTACT . 172

7.22.1.3 APP_NAME . 172

7.22.1.4 APP_VERSION . 172

7.22.1.5 APP_VERSION_MAJOR . 172

7.22.1.6 APP_VERSION_MINOR . 172

7.22.1.7 APP_VERSION_PATCH . 173

7.22.1.8 BUILD_TIMESTAMP . 173

7.23 version.h . 173

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

xii

7.24 README.md File Reference . 174

7.25 src/Iterators.cpp File Reference . 174

7.26 Iterators.cpp . 174

7.27 src/json_utils.cpp File Reference . 175

7.27.1 Function Documentation . 176

7.27.1.1 generateCellJson() . 176

7.27.1.2 generateLutJson() . 178

7.27.1.3 generatePinJson() . 179

7.27.1.4 generatePowerJson() . 182

7.27.1.5 generateTimingJson() . 183

7.27.1.6 parseStringToVector() . 185

7.28 json_utils.cpp . 186

7.29 src/LibAtrribute.cpp File Reference . 189

7.30 LibAtrribute.cpp . 189

7.31 src/LibFile.cpp File Reference . 190

7.32 LibFile.cpp . 190

7.33 src/LibFileOperations.cpp File Reference . 207

7.33.1 Function Documentation . 208

7.33.1.1 compareLibFiles() . 208

7.33.1.2 funcLibFile() . 209

7.33.1.3 monoCheckLibFile() . 212

7.33.1.4 parseLibFile() . 214

7.33.1.5 printInfo() . 216

7.33.1.6 spiceLibFile() . 217

7.33.1.7 supercellLibFile() . 218

7.33.1.8 verilogLibFile() . 221

7.34 LibFileOperations.cpp . 222

7.35 src/LibGroup.cpp File Reference . 227

7.36 LibGroup.cpp . 227

7.37 src/LibraryComparator.cpp File Reference . 228

7.38 LibraryComparator.cpp . 228

7.39 src/LogicComparator.cpp File Reference . 233

7.39.1 Function Documentation . 234

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

xiii

7.39.1.1 isIdentifier() . 234

7.39.1.2 isOperator() . 235

7.40 LogicComparator.cpp . 235

7.41 src/LogicExtractor.cpp File Reference . 250

7.41.1 Function Documentation . 250

7.41.1.1 extractAndPrintNetlistInfo() . 250

7.41.1.2 extractLogicFromVerilog() . 251

7.42 LogicExtractor.cpp . 252

7.43 src/main.cpp File Reference . 261

7.43.1 Detailed Description . 262

7.43.2 Function Documentation . 263

7.43.2.1 main() . 263

7.44 main.cpp . 264

7.45 src/verilog_utils.cpp File Reference . 269

7.45.1 Function Documentation . 269

7.45.1.1 getAST() . 269

7.46 verilog_utils.cpp . 270

索引 279

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 1

ZlibValidation

1.1 Description

Command line tool to validate standard cell libraries in .lib format.

ZlibValidation provides a suite of tools for engineers working with digital IC standard cell libraries in the
Liberty format (.lib). It helps ensure library quality, consistency, and facilitates comparison and conversion
tasks. Built with C++ for performance and leveraging robust libraries for parsing and command-line
interaction.

1.2 Table of Contents

• ZlibValidation

– Description

– Table of Contents

– Motivation

– Installation

∗ Prerequisites
∗ Optional Pre-requisites
∗ Building from Source (Recommended Method)
∗ Running ZlibValidation
∗ (Optional) Adding to your PATH

– Help Message / Features

– Example Usage

– Documentation and Reference Manual

∗ Doumentation Generation

– Acknowledgements

∗ Core Functionality Libraries:
∗ Build, Documentation, and External Tools:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2 ZlibValidation

1.3 Motivation

Validating standard cell libraries (.lib) is critical in chip design, but current solutions pose challenges.
Commercial tools are expensive, locking out many users (students, startups, researchers), and their
closed-source nature prevents customization and hinders innovation. This creates a gap, especially for
those needing rapid validation within tight resource constraints.

ZlibValidation aims to fill this gap. It is a free, open-source command-line tool designed for
comprehensive and efficient .lib file validation. Our goals are to:

• Lower the barrier to entry for library quality assurance.

• Provide fast, reliable checks (parsing, consistency, function, parameters, comparison).

• Enable transparency, customization, and community collaboration through open source.

• Bridge the divide between academic research and industrial needs in validation technology.

1.4 Installation

ZlibValidation is designed to be easily built and run directly from source without requiring admin-
istrator (sudo) privileges on Linux systems. This makes it ideal for environments where users have
restricted permissions. The recommended installation method is building from source.

1.4.1 Prerequisites

Before you begin, ensure you have the following installed on your Linux system:

• Git: To clone the repository.

• C++ Compiler: C++20 standard support required (e.g., GCC >= 12). Developed with GCC
14.2.0.

• CMake: Version 3.25 or higher (versions after 4.0.0 may exhibit compatibility issues).

• Ninja (recommended) or Make: Build systems. Ninja is preferred for its speed.

1.4.2 Optional Pre-requisites

• ccache: Optional but recommended for speeding up recompilation. Install it via your package
manager (e.g., conda install conda-forge::ccache).

• lld: Optional but recommended for faster linking. Install it via your package manager (e.g., conda

install conda-forge::lld).

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

1.4 Installation 3

1.4.3 Building from Source (Recommended Method)

Follow these steps to compile ZlibValidation in your user directory:

1. Clone the repository:
git clone https://github.com/Cedar17/ZlibValidation.git

cd ZlibValidation

2. Configure the build using CMake: Create a build directory and run CMake from within it. This
keeps build files separate from your source code.
mkdir build

cd build

Use Ninja as the build system (recommended):

cmake .. -G Ninja

or if you prefer Make:

cmake .. -G "Unix Makefiles"

Note: No sudo is needed here.

3. Compile the project: Use ninja to build the executable. If you chose Make, use make instead,
the -j flag speeds up compilation by using multiple processor cores.
If you used Ninja:

ninja

or if you used Make:

make -j$(nproc) # Adjust $(nproc) or use a specific number like -j8 for multi-threading

4. Locate the Executable: Upon successful compilation, the zlibvalidation executable will be
located inside the build directory: ./build/zlibvalidation.
Check the executable version:

./zlibvalidation --version

1.4.4 Running ZlibValidation

Since we haven't performed a system-wide install (which would typically require sudo), you need to run
the executable using its path relative to your current location.

• If you are in the project's root directory (ZlibValidation/), run it like this:
./build/zlibvalidation --help

• If you are inside the build directory, run it like this:
./zlibvalidation --help

1.4.5 (Optional) Adding to your PATH

For convenience, you can temporarily add the build directory to your shell's PATH variable for the current
session:
export PATH="$PWD/build:$PATH" # Assumes you are in the ZlibValidation root directory

Now you can run it directly:

zlibvalidation -h

To make this change permanent, you can add the above line to your shell's configuration file (e.g.,
∼/.bashrc, ∼/.zshrc).

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

4 ZlibValidation

1.5 Help Message / Features
ZlibValidation

Usage: ./zlibvalidation [OPTIONS] [SUBCOMMAND]

Options:

-h,--help Print this help message and exit

-v,--version Display program version information and exit

Subcommands:

parse Parse the Liberty file and write JSON to a file

mono Check the monotonicity of timing arc values

compare Compare the comparison library against the reference one and report differences

supercell Generate supercells for the given Liberty file

zlibboost ZlibBoost - Multi-threaded Library Processing Tool

clear Clear the log, JSON, map, markdown, Verilog, SPICE files in this directory

verilog Generate Verilog file for given Liberty file

spice Generate SPICE file for given Liberty file

func Check functional equivalence of two Liberty files or Verilog files

1.6 Example Usage

See test directory. There are some shell scripts showing how to use ZlibValidation. You can
modify them to validate your own standard cell library pdk.

1.7 Documentation and Reference Manual

See https://cedar17.github.io/ZlibValidation/ for HTML documentation and PDF reference
manual.

1.7.1 Doumentation Generation

To generate the documentation, you need to have Doxygen and Graphviz installed. You can install them
via your package manager or using conda:
conda install -c conda-forge doxygen graphviz

Then, run the following command in the root directory of the project:
doxygen Doxyfile

This will generate the documentation in the doc_doxygen directory. You can open the doc_←↩

doxygen/html/index.html file in your web browser to view the documentation.

Alternatively, you can generate the PDF reference manual by LaTeX.
cd doc_doxygen/latex

make

1.8 Acknowledgements

ZlibValidation leverages the power of several excellent third-party libraries, build tools, and external
utilities. We extend our sincere gratitude to the developers and communities behind these projects, which
were instrumental in building this tool:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://cedar17.github.io/ZlibValidation/

1.8 Acknowledgements 5

1.8.1 Core Functionality Libraries:

• Liberty Parser (csguth/LibertyParser):

– Purpose: Provides the core functionality for parsing the .lib (Liberty) standard cell library
format. This open-source implementation forms the basis of our library reading capabilities.

– Integration: The source code was cloned from the repository, manually compiled into a static
library (libsi2dr_liberty.a), and included directly within this project's include_3rd_←↩

party directory.

– License: SYNOPSYS Open Source License Version 1.0.

• CLI11:

– Purpose: Enables the robust, feature-rich, and user-friendly command-line interface, handling
subcommands and options parsing.

– Integration: Managed via CMake's FetchContent mechanism during the build process.

– License: BSD 3-Clause License.

• spdlog:

– Purpose: Provides a highly efficient and flexible library for structured logging throughout the
application, critical for debugging and user feedback.

– Integration: Managed via CMake's FetchContent.

– License: MIT License.

• nlohmann/json:

– Purpose: Used extensively for representing the parsed Liberty library data internally as JSON
objects, facilitating data storage, retrieval, and manipulation (e.g., for monotonicity checks
and comparisons).

– Integration: Managed via CMake's FetchContent.

– License: MIT License.

• ZlibBoost:

– Purpose: A multi-threaded library processing tool which is the foundation of the zlibboost

subcommand. It significantly boost standard cell library characterization with machine learning
using Python. See https://doi.org/10.1145/3658617.3703638 for detailed paper.

– Integration: Need to specify the path to the ZlibBoost main python script and python
environment in the ZlibValidation command line.

– License: BSD 3-Clause License with Commercial Use Restriction.

• tabulate:

– Purpose: Generates formatted text-based tables, significantly improving the readability of
reports generated by the compare subcommand.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/csguth/LibertyParser
https://github.com/CLIUtils/CLI11
https://github.com/gabime/spdlog
https://github.com/nlohmann/json
https://github.com/skycrapers/ZlibBoost
https://doi.org/10.1145/3658617.3703638
https://github.com/p-ranav/tabulate

6 ZlibValidation

– Integration: Managed via CMake's FetchContent.

– License: MIT License.

• slang:

– Purpose: A powerful library for parsing SystemVerilog/Verilog code. It's used here to analyze
Verilog netlists, extract Abstract Syntax Trees (AST), generate structural Verilog (verilog

subcommand), and extract logic for functional equivalence checks (func subcommand).

– Integration: Managed via CMake's FetchContent.

– License: MIT License.

• ExprTk (Expression Toolkit Library):

– Purpose: A fast mathematical expression parser and evaluation engine. It is used in the func

subcommand to dynamically evaluate the logical function strings extracted from libraries or
Verilog, enabling the functional equivalence check by comparing truth tables.

– Integration: The header file (exprtk.hpp) is included directly within this project's
include_3rd_party directory.

– License: MIT License.

1.8.2 Build, Documentation, and External Tools:

• CMake: The cross-platform build system generator used to configure and manage the entire
compilation process.

• Doxygen & Graphviz: Employed for automatically generating source code documentation and
visualizing relationships, aiding development and understanding.

• V2LVS (Calibre® Utility):

– Purpose: A command-line tool included with the Siemens EDA Calibre® platform, designed
to translate structural Verilog netlists into a basic SPICE format, typically for Layout Versus
Schematic (LVS) verification.

– Integration: The spice subcommand optionally utilizes v2lvs if it's found in the system's
PATH. It serves as the first-pass engine to convert the intermediate Verilog representation
into a raw SPICE netlist. ZlibValidation then performs post-processing on this output,
and ensure correct formatting.

The seamless integration facilitated by CMake FetchContent for many of these libraries, combined with
the direct inclusion of others, significantly streamlined development and enabled the rich feature set of
ZlibValidation. We encourage users to consult the individual project licenses for detailed terms of
use.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/MikePopoloski/slang
http://www.partow.net/programming/exprtk/index.html
https://cmake.org/
https://www.doxygen.nl/
https://graphviz.org/
https://resources.sw.siemens.com/en-US/video-how-to-translate-verilog-netlists-to-spice-using-calibre-v2lvs-utility/

Chapter 2

Development Diary

2.1 2025-01

2.1.1 2025-01-27

• 创建了一个C++空项目，使用CMake管理编译链，并手动添加了外部库 libsi2dr_liberty.a。

• 添加了 CLI11 库以处理命令行参数解析。

• 添加了 spdlog 日志库，实现高效的日志格式化输出。

2.1.2 2025-01-28

• 添加 nlohmann/json 库用于 JSON 数据存储和检索。

• 在 version.h 中存储项目作者、版本、构建日期等信息，由 CMake 自动维护。

• 简化了 --version 参数解析的代码实现，并添加了 --mode 选项以选择工作模式。

• 使用 spdlog库的日志记录器将 debug级别及以上的日志输出到文件，将 info级别及以上的日
志输出到控制台。

• 将库文件顶层封装为 LibFile对象，提供了读取、解析和修改库文件的方法，包含名称和 PVT
信息作为公共属性。

– 但仍然使用过程化方法循环迭代读取库文件名称和 PVT 信息。

• 按照 C++ 标准库、第三方库和本地库的顺序重新排列了 #include 语句。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

8 Development Diary

2.2 2025-02

2.2.1 2025-02-01

• 使用面向对象编程（OOP）重构了原先用C 语言循环遍历的代码，将简单属性的读取封装为
LibAttribute类，

– 并将函数返回的 char ∗类型的属性值转换为 std::string类型，便于外部使用。

• 将属性迭代过程封装为 AttributesIterator类，在析构函数中处理迭代退出，实现资源获取
即初始化（RAII）。

2.2.2 2025-02-10

• 将组的迭代过程封装为 GroupsIterator类，同样在析构函数中处理迭代退出。

• 封装了 LibGroup类，提供了读取组名、类别、属性、子组的方法。

• 将类的定义和实现分离，将类的实现放在 src目录下，将类的定义放在 include目录下，修改
了 CMakeLists.txt自动收集文件，便于模块化编译。

2.2.3 2025-02-11

• 类的头文件改为 hpp 后缀，修改了 CMakeLists.txt 中的文件收集规则，CMake 编译时间戳
更新。

• 为 LibFile类添加了输出同名 json格式文件的方法 LibFile::writeJsonToFile，目前能输出
PVT、cell_name、cell_footprint、cell_area信息。

• [x] voltage 浮点数误差未解决。

2.2.4 2025-02-14

• 在 json_utils.cpp 中，实现了以 JSON 数据结构循环迭代存储库 (lib) 信息的功能，具体
包括 generateCellJson, generatePinJson, generatePowerJson, generateLutJson等函
数，并添加了同名的 hpp 头文件。

• [x] 时序 (timing) 信息解析功能待完成。

• 新增辅助函数 parseStringToVector，该函数可将以逗号分隔的字符串解析为浮点数向量，以
便于读取 Look Up Table (LUT)。

• 为 LibFile 对象添加了私有属性 lib_json_，用于存储库 (lib) 的 JSON 对象。

• 封装了用于迭代复杂属性值的 ValuesIterator 类。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.2 2025-02 9

• 修改了 LibAttribute::isComplex() 函数的返回值类型，由原类型变更为 bool 类型。

• 重写了 LibGroup::getName() 函数，使其直接返回 std::string 类型的组名字。

• 重构了迭代器使用代码。移除了中间变量类似 si2drGroupsIdT sub_groups 的声明步骤。直
接使用 lib_group.getGroups()的返回值进行初始化 GroupsIterator，提升了代码的可读性
和简洁性。

2.2.5 2025-02-15

• 实现 generateTimingJson函数，用于全面解析时序信息。

2.2.6 2025-02-17

• 简化了迭代器在外部的调用流程，删除所有迭代器的 begin() 方法，改为在构造函数内部初
始化。

2.2.7 2025-02-18

• 新建 LibFile::mono()方法，准备实现库文件输出引脚的 values单调递增性检查。

• 修改了 setupLogger()函数，将日志文件名可作为参数传入，便于根据不同工作模式切换日志
文件。

2.2.8 2025-02-19

• 修改了 mode == "mono"情况下的逻辑，使用 C++17引入的 std::filesystem::exists()函
数检查同名 JSON 文件是否存在，如果 JSON 文件不存在，则先调用库文件解析功能，生成
JSON 文件，然后再执行单调性检查。

• 实现了 LibFile::mono()方法，检查 cell_rise、cell_fall、rise_transition、fall_transition这四种
timing信息，针对其 LUT 数据结构，检查其 value 值在表格的每一行是否保持单调递增。

2.2.9 2025-02-20

• LibFile::mono()方法增加结果统计功能，在程序运行的最后输出单调性检查中 passed (通
过) 和 failed (失败) 的 cell 数量，输出格式参考 liberate_lv 工具的风格。

• 以 sl018_ff_3.96_-40.lib 为例，与 liberate_lv 工具对比测试，结果均为 205 out of 559
cells failed。

• 对于非单调信息警告，增加输出 when 信息，方便用户查看具体位置。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

10 Development Diary

2.2.10 2025-02-25

• 重构命令行参数解析，使用 CLI11 库的子命令，在每个回调函数中实现 parse、mono 功能。

2.2.11 2025-02-26

• 子命令可自定义输出文件名、日志文件名，并设置了相应的默认值。

• 改为在 Logger 初始化时打印版本信息，避免在 -h，-v 时多余打印。

• LibFile::mono()方法增加对 input_slew的单调性检查，如果在输入时有指定，就检查 value
矩阵的每一列是否单调。经过测试，tcbn65lpbc.lib 输出与 liberate_lv 工具一致。

2.2.12 2025-02-27

• 多线程并行尝试，采用GDB调试：

– si2dr_liberty 库在解析 Liberty 文件时，可能使用了共享的数据结构（例如哈希表、字符串
表）来存储解析结果或中间数据。

– 在多线程并行解析多个文件时，不同的线程同时调用 si2dr_liberty 库的函数，并发地访问
和操作这些共享数据结构。

– si2dr_liberty 库可能没有采取足够的线程同步措施来保护这些共享数据结构，导致了数据
竞争。

– 数据竞争最终导致了内存损坏，使得 strcmp 函数在后续操作中访问了无效内存，触发了
段错误。

2.2.13 2025-02-28

• 修改 LibFile的构造函数与析构函数，read方法改为私有，移入 parse方法。将 si2dr初始化
与销毁放在 parse方法中，使得 mono方法与 si2dr库解耦，从而实现多线程并行验证单调性。

• [x] 顶层 si2drPIGetGroups 未退出的 bug: WARNING: si2drPIQuit: GetGroups called 1

more times than IterQuit，内存泄漏？

• 学到了可以在 CMakeLists.txt中使用 set(CMAKE_BUILD_TYPE Release)减少编译器优化程
度，配合GDB等调试工具检查堆栈信息。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.3 2025-03 11

2.3 2025-03

2.3.1 2025-03-01

• sub_groups_iter是在每次 for循环的迭代中声明的局部变量，在每次迭代结束后其作用域结
束，析构函数被调用，释放相关资源。所以 si2drPIQuit未发现内存泄漏。

• 顶层 group_iter的析构函数发生在 parse方法结束时，所以 parse方法末尾的 si2drPIQuit

检测到了顶层 groups未退出的情况。

• 综上，si2drPIQuit的警告是由于当时顶层 groups未退出导致的，在 parse方法结束后能正
确释放，不会造成实际上的内存泄漏。

• [] 顺序执行 parse，log输出仍存在问题：解析第二第三个库的时候会多余打印之前库的PVT
信息，时间上也比单独解析一个库的总和要慢 (parse 6s 左右，mono 1s)。并行执行 mono，log
输出会集中到最后一个库的文件。

• 给 LibFile类的私有属性添加了初始值，避免了未初始化的问题，吗？

2.3.2 2025-03-07

• 实现了 compare 子命令的解析，能够对两个库文件依次进行解析，并生成对应的 JSON 文件。

• [] 仍然存在日志重复输出的问题，多文件处理时数据可能会相互干扰。

2.3.3 2025-03-10

• 新增 supercell 子命令和 LibFile::supercell 方法，用于生成超级单元以供验证。

• 集成了 zlibboost 子命令，支持调用开源库特征化工具 zlibboost。已与开发者取得联系。

• 调整了子命令输出文件的位置为当前目录，避免文件混淆。

• 添加了 clear 子命令，方便清理生成的 JSON 文件和日志文件。

2.3.4 2025-03-14

• 添加了 tabulate/table库，通过 CMake FetchContent进行管理，用于生成格式化的表格输出。

• 新建了 compare.cpp 和 compare.hpp 文件，创建了 LibraryComparator 类，用于比较两个
库文件的差异。目前实现了读取参考库 JSON 文件的功能。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/skycrapers/ZlibBoost

12 Development Diary

2.3.5 2025-03-15

• 使用 std::filesystem::path 重构了 LibFile 类的文件路径管理，方便文件路径的拼接
和处理。LibFile 类添加了成员变量 basename_、filename_、libname_、jsonname_ 和
loggername_，用于存储文件名、库名、JSON 文件名和日志文件名。

• 通过作用域 (scope) 管理 LibFile::parse 方法中的顶层迭代器的生命周期，提前结束并调用
si2drPIQuit 保证资源释放，解决了分析多个库时日志重复输出和数据保存错误的问题。

• clear 子命令增加了删除 .map 和 .md 文件的功能。

• 实现了 mono 子命令的多线程并行。首先检查是否是多文件输入，如果是，就顺序检查是否准
备好了每个文件的 JSON 文件，否则顺序进行多文件库解析。在所有文件的 JSON 准备就绪
后，根据文件数量创建线程池，每个线程负责一个库的单调性检查。

• 重构了 spdlog日志初始化，返回 logger对象而不是设置全局默认 logger。保留名为 APP_NAME

的全局 logger，用于输出总体提示信息。

• 为 LibFile 类添加了独立的成员变量 logger，用于记录每个库文件的日志信息。

• 完成了 supercell 子命令的多线程并行，处理逻辑与 mono 子命令类似。

• LibraryComparator::generateReport() 方法测试了 tabulate 库的 markdown表格输出功
能，完善了报告的头部信息输出，包括参考库、比较库、相对容差、软件信息、报告生成时间
和图例说明。

2.3.6 2025-03-16

• 针对 compare 子命令，增加了对报告文件名的检查，确保其以 .md 或 .txt 结尾。若不符合，
则给出警告并自动添加 .md 后缀。

• 进一步完善了 LibraryComparator::generateReport()方法。现在，该方法能够遍历比较库中
的所有 cell，并在参考库中查找对应的 cell。如果找到，则调用 LibraryComparator::compareCell()

方法进行比较；否则，会记录 cell 未找到的警告信息。

• 新增了 LibraryComparator::compareCell() 方法，用于比较两个库中同名 cell 的输出引脚。
该方法会遍历比较库 cell 的每个输出引脚，在参考库 cell 中寻找同名引脚。如果找到，则调用
comparePin函数比较引脚；如果未找到，则记录警告信息。如果比较库 cell没有输出引脚，则
会记录一条信息级别的日志。

• 新增了 LibraryComparator::comparePin() 方法，用于比较两个库中同名 cell 的同名引脚。
它会遍历比较库 pin 的每个 timing arc，并在参考库 pin 中查找相同类型的 timing arc。如果找
到，则调用 compareTimingArc函数进行比较；如果未找到，则记录警告信息。如果比较库 pin
没有 timing arc，则记录一条信息级别的日志。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.3 2025-03 13

• 修改了 LibraryComparator::compareTimingArc() 方法，用于比较两个 timing arc JSON 对
象。该方法首先记录正在比较的 timing arc 的类型，然后提取 ”related_pin” 属性。接着，它
遍历预定义的 timing arc 名称列表（”cell_rise”, ”cell_fall”, ”rise_transition”, ”fall_transition”），
并在比较库中查找这些 timing arc。如果找到，则在参考库中查找对应的 timing arc，并调用
compareLut 方法进行比较。如果参考库中未找到对应的 timing arc，则记录警告信息。

• 修改了 LibraryComparator::compareLut()方法（原 compareValue方法，已更正命名），用
于比较两个 JSON 对象中具有相同名称的 value。它首先提取两个 JSON 对象中的 ”index_1”
和 ”index_2” 数组，如果这两个数组不相等，则记录错误信息并返回。如果索引匹配，则比较
LUT 中的实际 value 值，并根据相对容差 (reltol) 和绝对容差 (abstol) 标记差异。

• 重新设计了层级比较方法，现在可以逐层级地传入 cell_name、pin_name、timing_type、
related_pin 和 arc_name，以便在最内层制表或提示时能够准确输出层级信息。

• 修复了 LibraryComparator::compareValue()方法的命名错误，已更正为 LibraryComparator::compareLut()。

• 已经可以输出表格，数据数量和商用工具结果一致，但格式还需要进一步调整。

• 新增了 abstol 参数，默认值为 0.002ns，用于设置绝对容差，与库验证工具保持一致。

2.3.7 2025-03-17

• 新增 verilog 和 spice 子命令，用于生成 Verilog 和 SPICE 代码。

• 完善 LibraryComparator 报告生成：

– 为每个 cell 增加表头，仅在存在表格数据时输出表格，避免冗余输出。

– 增加 cell 结果统计功能，输出结果统计表格，目前仅支持 Timing 中 Delay 的比较。

2.3.8 2025-03-18

• 优化统计表格，包含 | Cell Name | Data Type | Failed Count | Avg Diff | Avg Diff% | Max Diff |
Max Diff% | Outliers |。

• 优化报告对比表格，包含 | Pin Name | Reference | Comparison | Diff | Diff % | Type | Arc Name
| Row # | Index_1 | Column # | Index_2 | Note |

• 报告表格的 stdout 输出增加表头加粗、黄色的格式化。

• 增加 si2drSimpleAttrGetBooleanValue 封装，用于获取布尔类型的属性值，以判断引脚是
否是时钟引脚。

• LibFile::mono() 增加对 min_pulse_width 的单调性检查：

– 针对包含 ”input_pins” 的 cell，遍历每个输入引脚。

– 如果引脚是时钟引脚，则检查其 ”timing_arcs”。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

14 Development Diary

– 针对 ”timing_type” 为 ”min_pulse_width” 的 timing arc，对 ”rise_constraint” 和 ”fall_←↩

constraint” 调用 checkTimingArcMonotonicity 进行单调性检查。

• checkTimingArcMonotonicity 函数日志区分有无 when 信息，输出不同日志。

• checkTimingArcMonotonicity 核心比较功能取消了等于的情况，相等情况默认为通过。

• checkTimingArcMonotonicity 核心比较功能增加了判断 related_pin 是否等于当前 pin，不
等于则跳过。最终改为：如果矩阵中当前的值小于前一个值，并且当前引脚不是相关引脚，或
者当前值和前一个值都为零，那么就认为这些值不是单调递增的。

2.3.9 2025-03-19

• 完善 supercell方法，如果有有时钟信号引脚，链式长度被设为 1，再生成超级单元。

• 解决 voltage 浮点数误差问题，std::round(voltage_ ∗ 100) / 100.0 保留两位小数。

2.3.10 2025-03-21

• 新增 func 子命令，用于检查库或者Verilog文件的逻辑等价性。

2.3.11 2025-03-24

• 调研了 C++ 操作 Verilog 相关的库，找到了一个实用的 Verilog 库：slang，它可以解析出抽
象语法树 (AST)。已修改 CMakeLists 文件，将 slang 集成到项目中，目前正在研究其 API。

2.3.12 2025-03-25

• 新增 verilog_utils.cpp 和 verilog_utils.hpp 文件，并创建了 VerilogVisitor 类，用于
自定义遍历 Verilog AST。

• 验证了 slang 对不同类型逻辑单元的解析能力：

– 简单组合逻辑（如 AND2D0）、复杂时序逻辑（如 CMPE42D1）和基本时序逻辑（如 DFQD1）
均能被正确解析。

– 用户自定义原语 (UDP)，例如 tsmc_dff，会被错误地识别为模块实例化，并产生 ”Invalid
instance declaration” 警告。

– 成功提取了模块名、端口方向（input、output）及名称。

– 能够解析命名端口连接的层次化实例化，并获取模块名、实例名称和端口映射关系。

– 能够解析门级原语实例化，并获取门类型、实例名称、输出端口和输入端口。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://github.com/MikePopoloski/slang

2.3 2025-03 15

2.3.13 2025-03-26

• 进一步完善了对 UDP（如 tsmc_dff）端口映射关系的解析，但其内部 Entry 尚未处理。

• 尝试了通过继承 slang::syntax::SyntaxRewriter 类创建自定义类 CellExtractor，实现了
只保留目标模块、删除其他模块，并将修改后的语法树另存为新文件。使用 slang::syntax←↩

::SyntaxPrinter::printFile() 方法可以将 Verilog 代码输出到文件。

• 创建了 CellPrinter类，继承自 slang::syntax::SyntaxVisitor类。当访问到目标模块时，
使用 module.toString() 方法也能将 Verilog 代码输出到文件，但发现输出结果中空行会被
删除。

• 修改了 LibFile::supercell() 方法，该方法可以根据输入的 cell_names 生成指定的 super-
cell，并在遇到未找到的单元时提示警告信息。

• 优化了时钟引脚的处理方式，现在时钟引脚不再被视为 supercell的输入引脚，而是仅记录为时
序单元，并跳过存入 input_pins 集合的步骤。

• 引入了 Doxygen文档生成工具，用于可视化分析项目，并生成了 Doxygen HTML文档和 LaTeX
参考手册。

• [x] 尚未解决手册中文显示不正确的问题，可能需要自定义 LaTeX 头文件。

2.3.14 2025-03-27

• 重大失误！误操作 Git 分支，导致部分代码修改丢失。务必牢记：∗∗及时提交代码！∗∗

• 实现了 LibFile::verilog 方法的核心流程：

– 首先调用 this->supercell() 生成超级单元。

– 读取 .map文件，提取单元映射关系到 std::pair<std::string, std::string>中（原
始单元名 -> 超级单元名/模块名）。

– 从 lib_json_ 中提取单元的输入/输出端口信息。

– 根据是否存在时钟引脚，确定 Verilog 模块中 instance 的生成数量（时序逻辑为 1，组合
逻辑等于 chain length）。

– 通过字符串操作生成 ANSI风格的端口列表，并与模块名组合成完整的 fullModuleText。

– 使用 slang::syntax::SyntaxTree::fromText 从 fullModuleText 生成语法树。

– 将语法树传递给 ModuleRewriter 类，使用其 transform 方法遍历模块成员，并通过
handle() 方法进行处理。

– 最后，使用 slang::syntax::SyntaxPrinter::printFile(∗tree) 将处理后的语法树输
出到文件。

• LibFile::verilog 目前能够正确输出模块名和 ANSI 风格的端口声明。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

16 Development Diary

2.3.15 2025-03-28

• 实现了在模块成员列表中插入新节点的功能。具体而言，在 ModuleRewriter::handle(const

slang::syntax::ModuleDeclarationSyntax &module)方法中，通过 insertAtBack(module.←↩

members, newDataNode) 函数，成功地在模块成员的末尾插入了链式单元所需的中间变量声
明，例如 wire OP_i;。

• 成功地在模块内部添加了关键连接网络变量。通过解析 CELLNAME__X#__CRITICALPORT←↩

__OUTPUTPORT 格式的字符串，提取出关键输入端口 (critical input port) 和输出端口
(OUTPUTPORT)，用于后续的实例化端口连接。

• 增加了用于处理多输出接口的中间网络变量 P__UNUSEOUTPUTPORT，用于连接不需要考察的输
出端口。

• 成功地在模块内添加了模块实例化所需的模块名和实例名称，完成了端口映射关系的连接处
理。

• 验证了代码对简单组合逻辑单元（如 INVD0 反相器）和复杂组合逻辑单元（如 FA1D0 全加器）
的输出能力，结果均符合预期。

• 为 ModuleRewriter 类添加了私有属性 std::map<std::string, std::string> port←↩

InfoMap_，用于存储端口映射关系，将端口名映射到其方向（input/output）。

• 完成了实例化端口连接的细节处理：

– 如果是关键输入端口且为第一个实例，则直接连接到输入端口；否则，连接到 OP_(i-1)

这样的中间网络变量。

– 如果是关键输出端口，且为最后一个实例，则连接到输出端口；否则，连接到 OP_i 中间
网络变量。

– 如果是其他输出端口且不是最后一个实例，则连接到 P_i__portName 这样的中间网络变
量；否则，连接名等于端口名。

– 其余输入端口，连接名等于端口名。

• 文档方面，GitHub 远程仓库已开放为公开访问，并配置了 GitHub Pages。可以通过 https←↩

://cedar17.github.io/ZlibValidation/访问项目文档，该页面包含 Doxygen生成的 HTML
文档和仓库地址的链接。

• 配置了 GitHub Actions，实现了 Doxygen 文档和 Graphviz 图的自动化构建，以及 LaTeX 参考
手册的自动编译（暂不支持中文）。每次在 dev 和 main 分支的提交都会触发文档和参考手册
的生成，并发布到 gh-pages 分支。

• 将第三方库放置到 include_3rd_party 目录下，方便管理。修改了 CMakeLists 文件，将第三
方库的头文件路径添加到 include_directories 中。修改了 Doxyfile 文件，将第三方库的头
文件路径添加到 INPUT 中，便于文档生成工具理解第三方库函数、类的关系及使用方法。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

https://cedar17.github.io/ZlibValidation/
https://cedar17.github.io/ZlibValidation/

2.3 2025-03 17

2.3.16 2025-03-29

• 修复了 Doxygen 生成 LaTeX 参考手册时中文显示不正确的问题。通过修改 Doxyfile 文件，添
加 EXTRA_PACKAGES = ctex 选项，并指定 lualatex 作为编译器，成功解决了中文显示问题。
同时，从 include_3rd_party 目录中移除了 Allsyntax.h 文件，避免了由于 LaTeX 文档过
大导致的 ”TeX capacity exceeded, sorry [main memory size=5000000]” 内存不足问题。

• 实现了 Verilog 文件的顶层模块生成功能，采用非 ANSI 风格的端口声明方式，格式与
liberate_lv 工具生成的完全一致。实现过程如下：

– 首先将各模块的 Verilog 代码存放到临时文件中。

– 在处理模块的过程中，使用 std::vector<std::string> 收集每个模块的 input_pins

和 output_pins。

– 遍历所有模块名称列表，拼接模块名和引脚名，生成顶层模块的 all_input_ports 和
all_output_ports。

– 使用字符串拼接方式构建 validate_top 模块的完整代码。

– 最后将临时文件内容与顶层模块代码合并，输出到最终的 Verilog 文件中。

• 更改 deploy-docs.yml，修复了 GitHub Action 生成的 LaTeX 参考手册中的图像显示问题。具
体步骤如下：

– 设置系统时区为 Asia/Shanghai (东八区)。

– 安装 miniconda 并更新 conda。

– 通过 conda 安装 1.9.5 版本的 Doxygen，并安装 graphviz 以解决依赖关系，确保每个 dot
图都能正确编译出 pdf 文件。

– 使用 doxygen 命令生成 HTML 文档和 tex 文件。

– 采用 action marketplace 提供的 xu-cheng/texlive-action@v2 安装全量的 texlive2024。

– 进入 ./doc_doxygen/latex 目录，运行 make 命令使用 lualatex 编译 tex 文件，生成 pdf
文件。

– 使用 JamesIves/github-pages-deploy-action@v4 将生成的 pdf 文件上传到 GitHub
Pages 发布，并保留 README.md 和 index.html 文件。

2.3.17 2025-03-30

• 完成了 LibFile::logic(const std::string &cell_name)方法，该方法返回指定 cell_name
所有输出引脚对应的逻辑表达式，以 std::map<std::string, std::string> 的形式返回，
存储输出引脚名称到其逻辑表达式字符串的映射关系.

• 实现了 func 子命令的基本框架，用于检查库或 Verilog 文件的逻辑等价性。

– 完善了 funcLibFile 函数，能够处理 Liberty 文件和 Verilog 文件作为参考和比较对象。

– 增加了文件类型判断，根据文件扩展名选择不同的处理方式。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

18 Development Diary

– 实现了对 .lib 文件的解析，并提取指定 cell 的逻辑表达式。

– 目前仅支持 Liberty 文件的逻辑表达式提取，Verilog 文件的逻辑表达式提取功能尚未完成
（TODO）。

– 增加了对 report 文件名的检查，确保其以 .md 或 .txt 结尾。若不符合，则给出警告并自
动添加 .md 后缀。

– 实现了从 Liberty 文件中提取逻辑表达式的功能，使用了 LibFile::logic 方法。

– 增加了日志输出，记录每个 cell 的逻辑表达式提取和比较过程。

– 逻辑比较部分目前为空，待实现（TODO）。

2.3.18 2025-03-31

• 实现了从 Verilog 结构网表中提取逻辑表达式的功能，使用了 LogicExtractor 类。

– 设计了如何使用 Slang 库从 Verilog 结构网表中提取逻辑表达式的方案：

∗ 使用 Slang 解析 Verilog 文件获取语法树 (AST)。
∗ 遍历 AST 定位目标模块。
∗ 在目标模块内构建网表的内部表示，识别输入、输出、线网及门级连接关系。
∗ 对每个输出端口，递归反向追踪门和线网直至到达主输入端口。
∗ 在回溯过程中根据遇到的门类型构建逻辑表达式。
∗ 应用记忆化技术避免对相同线网/信号的重复计算。

– 创建了 LogicExtractor 类，用于从 Verilog 代码中提取逻辑表达式。

∗ LogicExtractor 类使用 Slang 库解析 Verilog 文件，并构建目标模块的网表表示。
∗ 实现了 handle(const slang::syntax::ModuleDeclarationSyntax &module) 方
法，用于定位目标模块，并初始化内部数据结构。

∗ 实现了 handle(const slang::syntax::PortDeclarationSyntax &portDecl) 方
法，用于提取端口信息，包括端口方向和名称。

∗ 实现了 handle(const slang::syntax::NetDeclarationSyntax &netDecl) 方法，
用于提取线网信息。

∗ 实现了 handle(const slang::syntax::PrimitiveInstantiationSyntax &primitive←↩

Inst) 方法，用于提取门级单元信息，包括门类型、输入和输出信号。

∗ 实现了 getLogicExpressions() 方法，用于根据提取的网表信息，递归地推导每个
输出端口的逻辑表达式。

∗ 实现了 deriveLogicRecursive(const std::string &signalName)方法，用于递归
地推导指定信号的逻辑表达式。

∗ 实现了 formatExpression(const GateInfo &gateInfo, const std::vector<std←↩

::string> &inputExprs) 方法，用于根据门类型和输入表达式，生成逻辑表达式字
符串。

– 实现了 extractAndPrintNetlistInfo(const std::string &verilog_file, const

std::string &cell) 函数，用于提取并打印网表信息，包括输入、输出、线网和门级
单元。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 19

– 实现了 extractLogicFromVerilog(const std::string &verilog_file, const std←↩

::string &cell) 函数，用于从 Verilog 文件中提取指定 cell 的逻辑表达式，并以 std←↩

::map<std::string, std::string> 的形式返回。

• 为了更好地组织代码结构，将 LogicExtractor类从 verilog_utils.hpp和 verilog_utils.cpp

中分离出来，并创建了独立的 LogicExtractor.hpp 和 LogicExtractor.cpp 文件。同时，统
一了所有 hpp 和 cpp 文件的命名规范，使其与对应的类名保持一致。

• 新增 LogicComparator 类及其头文件、源文件，用于比较两个逻辑表达式的等价性，并生成
比较报告。

2.4 2025-04

2.4.1 2025-04-01

• 整理头文件引用，删除了不必要的引用，提高编译效率。

• 引入 exprtk.cpp 到第三方头文件目录，为后续的表达式解析做准备。

• 完善了 LogicComparator 类的实现，增加了其示例代码模板 template <typename T> void

logic();，该模板能够对一个表达式遍历输入变量的所有组合，计算出逻辑值，并打印真值表，
为逻辑等价性验证提供基础。

• 实现了 LogicComparator::preprocessExpression() 方法，用于预处理逻辑表达式，目的是
简化表达式，使其更易于比较。预处理的逻辑如下：

– ∗∗统一 AND 处理 ∗∗：将 ∗ 和空格隐式 AND 都转换为带空格的 and，保证 AND 运算符
的显式性。

– ∗∗显式符号处理 ∗∗：

∗ 在所有括号 () 周围添加空格，方便后续分词。

∗ 将 + 替换为 or。

∗ 将 ∧ 替换为 xor。

∗ 将 ! (非 != 中的 !) 替换为 not。

∗ 将 ∗ 替换为 and。

– ∗∗分词 ∗∗：基于空格将处理后的字符串分割为 token 列表。

– ∗∗精确插入隐式 AND∗∗：

∗ 遍历 token 列表。

∗ 检查当前 token 和下一个 token，如果满足以下条件，则在当前 token 之后插入 and：

· 当前 token 是一个标识符 (如 A, CIX) 或右括号)。

· 下一个 token 是一个标识符或左括号 (。

· 当前 token 不是一个显式逻辑运算符 (and, or, xor, not) 或左括号 (。

· 下一个 token 不是一个显式逻辑运算符或右括号)。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

20 Development Diary

– ∗∗重组与清理 ∗∗：将处理后的 token 列表用单个空格连接起来，并进行最终的空格清理
（去除多余空格，修剪首尾空格），得到最终的预处理表达式。

• 在 CMakeLists.txt 中，强制启用了 lld 链接器和 ccache，以提升链接和编译速度。

• 为了保持 main.cpp的整洁，将 LibFile()函数的相关操作剥离出来，并放入 LibFileOperations.cpp

文件中。

• 实现了 LogicComparator::extractVariables()方法，用于从两个表达式中提取并验证变量
名，确保它们一致。

– 该方法使用正则表达式初步提取所有可能的标识符。

– 对每个提取出的标识符，先用 isIdentifier 函数（检查大写开头等）进行验证。

– 通过 isIdentifier 验证后，仍然将其转换为小写并与 keywords 集合比较，以过滤掉可
能的关键词（这是一个保守但安全的操作）。

– 只有通过这两步验证的标识符才被认为是有效变量，并以原始大小写形式添加到各自的
std::set 中。

– 最后比较两个 std::set 是否相等，如果不等则报告差异并返回 false，如果相等则将变
量列表（保留原始大小写）排序后存入 sorted_vars 并返回 true。

• 修复了 LogicComparator::preprocessExpression() 方法中对 not 操作符的处理。exprtk 库
要求 not 关键字后必须跟着括号，如 not(A) 而非 not A。为此增加了专门的处理步骤：

– 遍历预处理后的 token 列表，识别所有 not 关键字。

– 当发现 not 后，检查其后是否跟随标识符（通过 isIdentifier() 函数判断）。

– 如果后接标识符，自动将 not A 形式转换为 not(A)，具体做法是依次添加 not、(、标识
符和)，并跳过已处理的标识符。

– 如果后接其他元素（如 (、其他运算符或表达式结尾），保留原样，让 ExprTk处理 not(表
达式) 形式。

– 对其他 token，直接添加到最终 token 列表，不做特殊处理。

• 实现了 LogicComparator::compareSingleExpressionPair() 方法，用于比较两个逻辑表达
式的等价性：

– 接收预处理后的表达式字符串和已排序的变量列表作为输入参数。

– 为参考表达式和比较表达式分别创建 ExprTk 环境（符号表、表达式对象和解析器）。

– 将所有变量添加到两个符号表中，确保变量一致性和顺序性。

– 使用 ExprTk 解析器编译两个表达式，并检查可能的语法错误。

– 通过二进制计数法，遍历所有可能的输入变量组合（2∧N 种），其中 N 为变量数量。

– 对每种组合：

∗ 设置两个符号表中的变量值（0或 1）。

∗ 计算两个表达式的值，并处理可能的运行时错误。

∗ 将计算结果转换为布尔值并存入结果向量。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 21

∗ 同步构建真值表，记录输入组合和对应的输出值。

– 比较两个结果向量判断表达式是否等价。

– 将生成的真值表存入 PinComparisonResult对象的 std::optional成员中，以便后续报
告生成。

• 实 现 了 template <typename T> std::map<std::string, PinComparisonResult>

LogicComparator::compareCellLogic();

– 该方法用于比较两个 cell 的逻辑表达式，返回一个 std::map，键为 cell 名称，值为
PinComparisonResult 结构体。

– 遍历在类私有属性里的整个独立输出引脚键，提取其值作为逻辑字符串表达式，首先使用
preprocessExpression 进行预处理，然后使用 extractVariables 提取变量向量。

– 调用 LogicComparator::compareSingleExpressionPair() 方法进行比较，结果存入
PinComparisonResult 对象。

– 最后将 PinComparisonResult 对象存入 std::map 中，键为 cell 名称，值为
PinComparisonResult 对象，返回。

• 实现了 LogicComparator::generateReport() 方法，报告格式仍需要调整。

2.4.2 2025-04-02

• 取消所有模板函数的 template <typename T> 声明，改为使用 double 作为参数类型，加快
编译速度。

• 完善了 LogicComparator::generateReport()方法，增加了对逻辑比较结果的详细报告输出，
包括：

– 元数据，例如：∗∗Performed by ZlibValidation v0.1.0 from Song Zixuan. on: Wed Apr 2
11:11:39 2025∗∗

– 图例，包括参考 pin名称、pin function，参考 pin名称、pin function，符号解释表。

– 参考 pin的真值表

– 比较 pin的真值表

– 比较结果表格，例如：

Property Value
Status [OK]
Reference (Raw) (!((!(A1+A2))+B))

Comparison (Raw) !((!A1 ∗ !A2) + B)

Reference (Processed) (not((not(A1 or A2)) or B))

Comparison (Processed) not((not(A1) and not(A2)) or B)

Ref Expression Compiled Yes
Comp Expression Compiled Yes
Logically Equivalent Yes

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

22 Development Diary

2.4.3 2025-04-05

• 新增了 LibFile::spice() 方法，为 spice 子命令添加了 SPICE 网表生成功能。 - 通过执行
which v2lvs 命令检测系统中是否安装了 V2LVS 工具。如果已安装，则调用该工具生成基本
的 SPICE 网表。 - 添加了 --vl 和 --sl 命令行选项，允许用户指定 Verilog 库文件和 SPICE
库文件的路径。 - 目前已能生成基本的 SPICE 网表，后续需要进一步完善输出格式。
Generate SPICE file for given Liberty file

Usage: ./zlibvalidation spice [OPTIONS] library_path...

Positionals:

library_path TEXT:FILE ... REQUIRED

Specify the library file to process

Options:

-h,--help Print this help message and exit

-l,--log TEXT Specify the log file name. Default: <basename>.spice.log

-c,--chain INT Specify the chain length for SPICE generation. Default: 1

--cells TEXT ... Specify the cell names to generate SPICE for

--vl TEXT Specify the location of the Verilog primitive library file

--sl TEXT Specify the location of the SPICE library file to be included in the output

• 实现私有方法 LibFile::splitString()，用于将字符串按空格分割成多个子字符串，并返回
一个 std::vector<std::string>。

• 实现了 LibFile::generateRCLines() 方法，用于为给定的 net 生成 RC lines。

– 该方法根据 isFinalStage 参数，生成不同的 RC 结构。

– 如果 isFinalStage 为 false，则生成 R1-C1-R2 结构。

– 如果 isFinalStage为 true，则生成 R1-C1结构。 - RC的默认值参考目标 SPICE文件。

• 实现了 LibFile::modifySpiceNetlist() 方法，用于修改 v2lvs 生成的 SPICE 网表。

– 该方法添加元数据注释，包括应用名称、版本、作者和时间戳。

– 在第一个 .INCLUDE 指令后插入指定的 global line。

– 修改 subcircuit，在 .SUBCKT 定义的端口列表中添加 VDD VSS。

– 对于 subcircuit中的每个 instance line（以 ‘'X’或'x'开头），修改输出引脚名称，添加VDD/←↩

VSS连接，并调用 generateRCLines生成 R/C lines。

– 保留原始注释，跳过空行、v2lvsheader line 和原始的.GLOBALline。

• 完全实现了 LibFile::spice() ̀ 方法，能够生成 SPICE 网表并输出到指定文件中。SPICE 网表的
生成过程如下：

– 检查是否指定了 Verilog 库文件和 SPICE 库文件，如果没有指定，则使用默认路径。

– 调用 v2lvs 工具生成初步的 SPICE 网表。

– 调用 LibFile::generateRCLines() 方法，为 SPICE 网表中的每个 instance 生成对应的
RC lines。

– 调用 LibFile::modifySpiceNetlist()方法，修改 SPICE网表，添加元数据、插入 global
line、调整 instance lines，并生成最终的 SPICE 网表。

– 将最终的 SPICE 网表输出到指定文件中。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

2.4 2025-04 23

2.4.4 2025-04-07

• 将项目研发日记从 README.md 迁移至独立的 ChangeLog.md 文件，存放于 doc/ 目录下，集中
记录更新与变更历史。

• 全面完善 README.md，补充项目描述、目录、动机、安装指南、使用示例、文档与手册、致谢
等内容，提升项目信息的完整性。

• 调整 CMakeLists.txt，取消强制使用 ccache 和 lld 的设定，改为检测系统环境，仅在存在
相应工具时启用，增强项目兼容性。

• 移除 FetchContent 中的 QUIET 选项，增加必要提示信息，更清晰地展示依赖库的获取状态。

• 项目版本更新至 v1.1.0。

• 明确 CMake 版本需求为 (VERSION 3.21...3.31)，确保项目在指定版本范围内构建。

• 在 README.md 中，特别感谢 ZlibBoost 项目，并新增编译文档和参考手册的教程，同时将
ccache 和 lld 列为可选编译准备。

2.4.5 2025-04-10

• 修正了 printInfo() 函数中的注释错误，将文件日志级别更正为 trace，而非 debug。

• 添加了 mono 子命令的测试命令到 test.sh 脚本中。

2.4.6 2025-04-15

• 修复了 LibraryComparator::generateReport 方法中的一个 bug，max_diff现在能基于绝对
值比较得出最大差异，并且最大差异百分比保持一致。

• 完善了所有关键子命令的测试命令，确保每个子命令都能在 test.sh 脚本中正确执行。

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

24 Development Diary

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AttributesIterator . 31
GateInfo . 39
GroupsIterator . 41
LibAttribute . 44
LibFile . 48
LibGroup . 72
LibraryComparator . 75
LogicComparator . 85
PinComparisonResult . 112
slang::syntax::SyntaxRewriter

CellExtractor . 34
ModuleRewriter . 108

slang::syntax::SyntaxVisitor
CellPrinter . 37
LogicExtractor . 96
VerilogVisitor . 119

ValuesIterator . 116

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

26 Hierarchical Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AttributesIterator . 31
CellExtractor . 34
CellPrinter . 37
GateInfo . 39
GroupsIterator . 41
LibAttribute . 44
LibFile . 48
LibGroup . 72
LibraryComparator . 75
LogicComparator . 85
LogicExtractor . 96
ModuleRewriter . 108
PinComparisonResult . 112
ValuesIterator . 116
VerilogVisitor . 119

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

28 Class Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

include/Iterators.hpp . 125
include/json_utils.hpp . 127
include/LibAttribute.hpp . 137
include/LibFile.hpp . 139
include/LibFileOperations.hpp . 141
include/LibGroup.hpp . 157
include/LibraryComparator.hpp . 159
include/LogicComparator.hpp . 161
include/LogicExtractor.hpp . 163
include/verilog_utils.hpp . 168
include/version.h . 171
src/Iterators.cpp . 174
src/json_utils.cpp . 175
src/LibAtrribute.cpp . 189
src/LibFile.cpp . 190
src/LibFileOperations.cpp . 207
src/LibGroup.cpp . 227
src/LibraryComparator.cpp . 228
src/LogicComparator.cpp . 233
src/LogicExtractor.cpp . 250
src/main.cpp

This file contains the main function for the ZlibValidation tool 261
src/verilog_utils.cpp . 269

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

30 File Index

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 6

Class Documentation

6.1 AttributesIterator Class Reference

#include <Iterators.hpp>

Public Member Functions

• AttributesIterator (si2drAttrsIdT attrs, si2drErrorT &err)
• ∼AttributesIterator ()
• void next ()
• bool end ()
• LibAttribute get ()

Private Attributes

• si2drAttrsIdT attrs_
• si2drAttrIdT attr_
• si2drErrorT & err_

6.1.1 Detailed Description

Definition at line 23 of file Iterators.hpp.

6.1.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

32 Class Documentation

6.1.2.1 AttributesIterator()

AttributesIterator::AttributesIterator (

si2drAttrsIdT attrs,

si2drErrorT & err)

Definition at line 14 of file Iterators.cpp.

6.1.2.2 ∼AttributesIterator()

AttributesIterator::∼AttributesIterator ()

Definition at line 18 of file Iterators.cpp.

6.1.3 Member Function Documentation

6.1.3.1 end()

bool AttributesIterator::end ()

Definition at line 21 of file Iterators.cpp.

Here is the caller graph for this function:

AttributesIterator::end

generateCellJson

LibFile::parse

generateLutJson

generatePowerJson

generatePinJson

generateTimingJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.1 AttributesIterator Class Reference 33

6.1.3.2 get()

LibAttribute AttributesIterator::get ()

Definition at line 23 of file Iterators.cpp.

Here is the caller graph for this function:

AttributesIterator::get

generateCellJson

LibFile::parse

generateLutJson

generatePowerJson

generatePinJson

generateTimingJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.1.3.3 next()

void AttributesIterator::next ()

Definition at line 20 of file Iterators.cpp.

Here is the caller graph for this function:

AttributesIterator
::next

generateCellJson

LibFile::parse

generateLutJson

generatePowerJson

generatePinJson

generateTimingJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.1.4 Member Data Documentation

6.1.4.1 attr_

si2drAttrIdT AttributesIterator::attr_ [private]

Definition at line 33 of file Iterators.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

34 Class Documentation

6.1.4.2 attrs_

si2drAttrsIdT AttributesIterator::attrs_ [private]

Definition at line 32 of file Iterators.hpp.

6.1.4.3 err_

si2drErrorT& AttributesIterator::err_ [private]

Definition at line 34 of file Iterators.hpp.

The documentation for this class was generated from the following files:

• include/Iterators.hpp
• src/Iterators.cpp

6.2 CellExtractor Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for CellExtractor:

CellExtractor

slang::syntax::SyntaxRewriter
< CellExtractor >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.2 CellExtractor Class Reference 35

Collaboration diagram for CellExtractor:

CellExtractor

slang::syntax::SyntaxRewriter
< CellExtractor >

Public Member Functions

• CellExtractor (const std::string &targetCell)
• void handle (const slang::syntax::ModuleDeclarationSyntax &module)
• bool foundTargetCell () const

Private Attributes

• const std::string & targetCell_
• bool foundTarget_

6.2.1 Detailed Description

Definition at line 33 of file verilog_utils.hpp.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 CellExtractor()

CellExtractor::CellExtractor (

const std::string & targetCell) [inline], [explicit]

Definition at line 35 of file verilog_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

36 Class Documentation

6.2.3 Member Function Documentation

6.2.3.1 foundTargetCell()

bool CellExtractor::foundTargetCell () const

Definition at line 364 of file verilog_utils.cpp.

Here is the caller graph for this function:

CellExtractor::foundTargetCellgetAST

6.2.3.2 handle()

void CellExtractor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 348 of file verilog_utils.cpp.

6.2.4 Member Data Documentation

6.2.4.1 foundTarget_

bool CellExtractor::foundTarget_ [private]

Definition at line 42 of file verilog_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.3 CellPrinter Class Reference 37

6.2.4.2 targetCell_

const std::string& CellExtractor::targetCell_ [private]

Definition at line 41 of file verilog_utils.hpp.

The documentation for this class was generated from the following files:

• include/verilog_utils.hpp
• src/verilog_utils.cpp

6.3 CellPrinter Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for CellPrinter:

CellPrinter

slang::syntax::SyntaxVisitor
< CellPrinter >

Collaboration diagram for CellPrinter:

CellPrinter

slang::syntax::SyntaxVisitor
< CellPrinter >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

38 Class Documentation

Public Member Functions

• CellPrinter (const std::string &targetCell, std::ostream &out)
• void handle (const slang::syntax::ModuleDeclarationSyntax &module)

Private Attributes

• const std::string & targetCell_
• std::ostream & out_
• bool foundTarget_

6.3.1 Detailed Description

Definition at line 46 of file verilog_utils.hpp.

6.3.2 Constructor & Destructor Documentation

6.3.2.1 CellPrinter()

CellPrinter::CellPrinter (

const std::string & targetCell,

std::ostream & out) [inline], [explicit]

Definition at line 48 of file verilog_utils.hpp.

6.3.3 Member Function Documentation

6.3.3.1 handle()

void CellPrinter::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 367 of file verilog_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.4 GateInfo Struct Reference 39

6.3.4 Member Data Documentation

6.3.4.1 foundTarget_

bool CellPrinter::foundTarget_ [private]

Definition at line 55 of file verilog_utils.hpp.

6.3.4.2 out_

std::ostream& CellPrinter::out_ [private]

Definition at line 54 of file verilog_utils.hpp.

6.3.4.3 targetCell_

const std::string& CellPrinter::targetCell_ [private]

Definition at line 53 of file verilog_utils.hpp.

The documentation for this class was generated from the following files:

• include/verilog_utils.hpp
• src/verilog_utils.cpp

6.4 GateInfo Struct Reference

#include <LogicExtractor.hpp>

Public Attributes

• slang::parsing::TokenKind kind
• std::string gateTypeName
• std::vector< std::string > inputSignals
• std::string outputSignal

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

40 Class Documentation

6.4.1 Detailed Description

Definition at line 9 of file LogicExtractor.hpp.

6.4.2 Member Data Documentation

6.4.2.1 gateTypeName

std::string GateInfo::gateTypeName

Definition at line 11 of file LogicExtractor.hpp.

6.4.2.2 inputSignals

std::vector<std::string> GateInfo::inputSignals

Definition at line 12 of file LogicExtractor.hpp.

6.4.2.3 kind

slang::parsing::TokenKind GateInfo::kind

Definition at line 10 of file LogicExtractor.hpp.

6.4.2.4 outputSignal

std::string GateInfo::outputSignal

Definition at line 13 of file LogicExtractor.hpp.

The documentation for this struct was generated from the following file:

• include/LogicExtractor.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.5 GroupsIterator Class Reference 41

6.5 GroupsIterator Class Reference

#include <Iterators.hpp>

Public Member Functions

• GroupsIterator (si2drGroupsIdT groups, si2drErrorT &err)
• ∼GroupsIterator ()
• void next ()
• bool end ()
• LibGroup get ()

Private Attributes

• si2drGroupsIdT groups_
• si2drGroupIdT group_
• si2drErrorT & err_

6.5.1 Detailed Description

Definition at line 9 of file Iterators.hpp.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 GroupsIterator()

GroupsIterator::GroupsIterator (

si2drGroupsIdT groups,

si2drErrorT & err)

Definition at line 3 of file Iterators.cpp.

6.5.2.2 ∼GroupsIterator()

GroupsIterator::∼GroupsIterator ()

Definition at line 7 of file Iterators.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

42 Class Documentation

6.5.3 Member Function Documentation

6.5.3.1 end()

bool GroupsIterator::end ()

Definition at line 10 of file Iterators.cpp.

Here is the caller graph for this function:

GroupsIterator::end

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.5.3.2 get()

LibGroup GroupsIterator::get ()

Definition at line 12 of file Iterators.cpp.

Here is the caller graph for this function:

GroupsIterator::get

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.5 GroupsIterator Class Reference 43

6.5.3.3 next()

void GroupsIterator::next ()

Definition at line 9 of file Iterators.cpp.

Here is the caller graph for this function:

GroupsIterator::next

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.5.4 Member Data Documentation

6.5.4.1 err_

si2drErrorT& GroupsIterator::err_ [private]

Definition at line 20 of file Iterators.hpp.

6.5.4.2 group_

si2drGroupIdT GroupsIterator::group_ [private]

Definition at line 19 of file Iterators.hpp.

6.5.4.3 groups_

si2drGroupsIdT GroupsIterator::groups_ [private]

Definition at line 18 of file Iterators.hpp.

The documentation for this class was generated from the following files:

• include/Iterators.hpp
• src/Iterators.cpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

44 Class Documentation

6.6 LibAttribute Class Reference

#include <LibAttribute.hpp>

Public Member Functions

• LibAttribute (si2drAttrIdT attr, si2drErrorT &err)
• ∼LibAttribute ()
• std::string getName ()
• bool isComplex ()
• si2drValuesIdT getValues ()
• long int getInt ()
• double getFloat ()
• std::string getString ()
• bool getBoolean ()

Private Attributes

• si2drAttrIdT attr_
• si2drErrorT & err_

6.6.1 Detailed Description

Definition at line 8 of file LibAttribute.hpp.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 LibAttribute()

LibAttribute::LibAttribute (

si2drAttrIdT attr,

si2drErrorT & err)

Definition at line 3 of file LibAtrribute.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.6 LibAttribute Class Reference 45

6.6.2.2 ∼LibAttribute()

LibAttribute::∼LibAttribute ()

Definition at line 5 of file LibAtrribute.cpp.

6.6.3 Member Function Documentation

6.6.3.1 getBoolean()

bool LibAttribute::getBoolean ()

Definition at line 25 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getBooleangeneratePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.6.3.2 getFloat()

double LibAttribute::getFloat ()

Definition at line 18 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getFloatgenerateCellJson

LibFile::parse

generatePinJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

46 Class Documentation

6.6.3.3 getInt()

long int LibAttribute::getInt ()

Definition at line 16 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getIntLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.6.3.4 getName()

std::string LibAttribute::getName ()

Definition at line 7 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getName

generateCellJson

LibFile::parse

generateLutJson

generatePowerJson

generatePinJson

generateTimingJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.6 LibAttribute Class Reference 47

6.6.3.5 getString()

std::string LibAttribute::getString ()

Definition at line 20 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getString

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.6.3.6 getValues()

si2drValuesIdT LibAttribute::getValues ()

Definition at line 14 of file LibAtrribute.cpp.

Here is the caller graph for this function:

LibAttribute::getValuesgenerateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.6.3.7 isComplex()

bool LibAttribute::isComplex ()

Definition at line 12 of file LibAtrribute.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

48 Class Documentation

6.6.4 Member Data Documentation

6.6.4.1 attr_

si2drAttrIdT LibAttribute::attr_ [private]

Definition at line 21 of file LibAttribute.hpp.

6.6.4.2 err_

si2drErrorT& LibAttribute::err_ [private]

Definition at line 22 of file LibAttribute.hpp.

The documentation for this class was generated from the following files:

• include/LibAttribute.hpp
• src/LibAtrribute.cpp

6.7 LibFile Class Reference

#include <LibFile.hpp>

Public Member Functions

• LibFile (const std::string &filepath, const std::string &loggername)
Constructs a LibFile object with specified file path and logger name.

• ∼LibFile ()
• void writeJsonToFile ()

Writes the JSON data stored in the object to a file.

• void parse ()
Parses the Liberty file and extracts library information into a JSON structure.

• void modify ()
• void mono (const bool is_slew)

Validates that lookup tables are monotonically increasing with respect to the output load.

• void supercell (const int chain_length, const std::vector< std::string > &cell_names)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 49

Creates supercells based on standard cells in the library file.

• void verilog (const int chain_length, const std::vector< std::string > &cell_names)
Generates Verilog files for cell validation based on the library file.

• void spice (const int chain_length, const std::vector< std::string > &cell_names, const std::string
&verilog_lib_file, const std::string &spice_lib_file)

Generates a SPICE netlist for the library based on a temporary Verilog file, using the V2LVS tool.

• std::map< std::string, std::string > logic (const std::string &cell_name)
Retrieves the logic functions for the output pins of a specified cell within the Liberty file.

Public Attributes

• std::shared_ptr< spdlog::logger > logger_
• std::filesystem::path filepath_
• std::string basename_
• std::string filename_
• std::string libname_ = ””
• std::string jsonname_ = ””
• std::string loggername_ = ””
• json lib_json_ = json::object()

Private Member Functions

• void read ()
Reads the Liberty file specified by the filename_ member variable.

• bool checkTimingArcMonotonicity (const json &cell, const json &pin, const json &arc, const std←↩

::string &type, bool is_slew)
Checks if the values in a timing arc are monotonically increasing.

• std::vector< std::string > splitString (const std::string &s)
Splits a string into a vector of tokens, using whitespace as the delimiter.

• void generateRCLines (std::ofstream &outFile, const std::string &netName, int instanceIndex, bool
isFinalStage)

Generates RC lines for a given net in either an intermediate or final stage.

• bool modifySpiceNetlist (const std::string &v2lvsSpiceFile, const std::string &finalSpiceFile, const
std::string &targetGlobalLine)

Modifies a SPICE netlist generated by v2lvs, adding metadata, inserting a global line, and adjusting instance
lines within subcircuits to include VDD/VSS connections and generate corresponding R/C lines.

Private Attributes

• si2drErrorT err_
• int process_ = 0
• float voltage_ = 0.0
• int temperature_ = 0

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

50 Class Documentation

6.7.1 Detailed Description

Definition at line 23 of file LibFile.hpp.

6.7.2 Constructor & Destructor Documentation

6.7.2.1 LibFile()

LibFile::LibFile (

const std::string & filepath,

const std::string & loggername)

Constructs a LibFile object with specified file path and logger name.

This constructor initializes a LibFile object with the given file path and creates a logger with the specified
name. It sets up:

• Two logging sinks: a colored console sink and a file sink

• File path information including filename, basename, and a corresponding JSON filename

• Log levels (info for console, debug for file)

Parameters

filepath The path to the file to be processed
loggername The name for the logger and the log file

Definition at line 15 of file LibFile.cpp.

6.7.2.2 ∼LibFile()

LibFile::∼LibFile ()

Definition at line 35 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 51

6.7.3 Member Function Documentation

6.7.3.1 checkTimingArcMonotonicity()

bool LibFile::checkTimingArcMonotonicity (

const json & cell,

const json & pin,

const json & arc,

const std::string & timing_arc_name,

bool is_slew) [private]

Checks if the values in a timing arc are monotonically increasing.

This function examines the values in the specified timing arc to ensure they are monotonically increasing.
It checks monotonicity in two dimensions:

1. Across rows (by output load capacitance)

2. Across columns (by input slew, only if is_slew is true)

The function logs detailed information about any non-monotonic values found, including cell name, pin
names, and conditional statements (when clause) if present.

Parameters

cell The JSON object representing the cell being checked
pin The JSON object representing the pin being checked
arc The JSON object representing the timing arc being checked
timing_arc_name The name of the timing arc to check (e.g., ”cell_rise”, ”cell_fall”)
is_slew Boolean flag indicating whether to check monotonicity across input slew values

Returns

true if all values in the timing arc are monotonic, false otherwise

Exceptions

None,but logs errors or warnings for invalid data formats or non-monotonic values

Definition at line 205 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

52 Class Documentation

Here is the caller graph for this function:

LibFile::checkTimingArcMonotonicityLibFile::monomonoCheckLibFilemain

6.7.3.2 generateRCLines()

void LibFile::generateRCLines (

std::ofstream & outFile,

const std::string & netName,

int instanceIndex,

bool isFinalStage) [private]

Generates RC lines for a given net in either an intermediate or final stage.

This function generates SPICE-like resistor-capacitor (RC) lines and writes them to the provided output
file stream. The generated RC structure differs based on whether it's an intermediate stage or the final
stage. In the intermediate stage, an R1-C1-R2 structure is created. In the final stage, a simplified R1-C1
structure is used.

Parameters

outFile The output file stream to write the RC lines to.
netName The name of the net to generate RC lines for. This name is used to construct node

names.
instanceIndex A unique index for the instance, used to create unique component names (R1, C1,

R2).
isFinalStage A boolean flag indicating whether this is the final stage. If true, a simplified RC

structure is generated. If false, an intermediate RCR structure is generated.

• The function uses predefined default RC values (R1, C1, R2) that are specific to either the inter-
mediate or final stage.

• The CAP_GROUND constant defines the ground node to which capacitors are connected.

• The output is formatted in scientific notation with a precision of 1 before writing the RC lines and
then reset to default.

• Node names are constructed by appending ”:1” or ”:2” to the netName for intermediate nodes.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 53

// Example usage:

std::ofstream outFile("rc_lines.sp");

LibFile::generateRCLines(outFile, "net123", 5, false); // Generate intermediate RC lines for net

"net123", instance 5 LibFile::generateRCLines(outFile, "net123", 5, true); // Generate final RC

lines for net "net123", instance 5 outFile.close();

Definition at line 931 of file LibFile.cpp.

Here is the caller graph for this function:

LibFile::generateRCLinesLibFile::modifySpiceNetlistLibFile::spicespiceLibFilemain

6.7.3.3 logic()

std::map< std::string, std::string > LibFile::logic (

const std::string & cell_name)

Retrieves the logic functions for the output pins of a specified cell within the Liberty file.

This method searches for a cell with the given name in the parsed Liberty file (either by parsing the file
directly or reading from a JSON representation). It then iterates through the output pins of the cell,
extracting the logic function associated with each pin. The logic functions are stored in a map, where
the key is the pin name and the value is the logic function string.

If the JSON file does not exist, the Liberty file is parsed, and a JSON file is created. If the JSON file
exists but cannot be opened or parsed, an error is logged, and an empty map is returned. If the specified
cell is not found or if no logic functions are found for the cell, a warning is logged.

Parameters

cell_name The name of the cell for which to retrieve the logic functions.

Returns

A map containing the logic functions for the output pins of the specified cell. The keys of the map
are the pin names, and the values are the corresponding logic function strings. Returns an empty
map if no logic functions are found or if an error occurs during file processing.

Definition at line 1392 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

54 Class Documentation

Here is the call graph for this function:

LibFile::logic

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

LibFile::logicfuncLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 55

6.7.3.4 modify()

void LibFile::modify ()

Definition at line 182 of file LibFile.cpp.

6.7.3.5 modifySpiceNetlist()

bool LibFile::modifySpiceNetlist (

const std::string & v2lvsSpiceFile,

const std::string & finalSpiceFile,

const std::string & targetGlobalLine) [private]

Modifies a SPICE netlist generated by v2lvs, adding metadata, inserting a global line, and adjusting
instance lines within subcircuits to include VDD/VSS connections and generate corresponding R/C
lines.

This function reads a SPICE netlist from v2lvsSpiceFile, modifies it according to the following rules,
and writes the result to finalSpiceFile:

1. Metadata Comments: Adds a header with application name, version, author, and timestamp.

2. Global Line Insertion: Inserts a specified global line (targetGlobalLine) after the first
.INCLUDE directive.

3. Subcircuit Modifications:

• Adds VDD VSS to the port list of .SUBCKT definitions.

• For each instance line (starting with 'X' or 'x') within a subcircuit:

– Modifies the output pin name by appending ”:1”.
– Inserts VDD VSS before the module name in the instance line.
– Calls generateRCLines to generate and insert R/C lines for the instance.

4. Comment Handling: Preserves original comments, but processes any pending instance line before
writing the comment.

5. Empty/v2lvs Header Line Skipping: Skips empty lines and lines starting with v2lvs header
comments.

6. ∗∗.GLOBAL Line Skipping:∗∗ Skips original .GLOBAL lines.

The function handles case-insensitive .SUBCKT and .ENDS directives. It also manages a previous←↩

InstanceLine buffer to handle instance lines that might need modification before the next line is
processed.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

56 Class Documentation

Parameters

v2lvsSpiceFile The path to the input SPICE netlist file generated by v2lvs.
finalSpiceFile The path to the output SPICE netlist file after modification. This file will be

overwritten if it exists.
targetGlobalLine The string containing the global line to be inserted after the .INCLUDE directive.

Returns

true if the modification was successful, false otherwise (e.g., if file opening fails).

Note

The function assumes that the second to last token in an instance line is the output net. It also
assumes a specific format for instance lines where VDD/VSS insertion and R/C line generation are
applicable. The generateRCLines method is expected to handle the actual generation of R/C
components.

See also

generateRCLines

Definition at line 1013 of file LibFile.cpp.

Here is the call graph for this function:

LibFile::modifySpiceNetlist

LibFile::generateRCLines

LibFile::splitString

Here is the caller graph for this function:

LibFile::modifySpiceNetlistLibFile::spicespiceLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 57

6.7.3.6 mono()

void LibFile::mono (

const bool is_slew)

Validates that lookup tables are monotonically increasing with respect to the output load.

This function checks the following timing data in the current library to ensure monotonicity:

• cell_rise and retaining_rise

• cell_fall and retaining_fall

• rise_transition and retain_rise_slew

• fall_transition and retain_fall_slew

• min_pulse_width constraints (rise_constraint, fall_constraint)

The function first checks if a parsed JSON representation exists. If not, it parses the Liberty file and
creates the JSON file. It then evaluates each timing arc in all cells and reports the pass/fail status at
the end.

Parameters

is_slew Boolean flag indicating whether to check slew values rather than delay values

The function outputs:

• Number of cells that passed/failed the monotonicity check

• List of cells that failed the check (if any)

Definition at line 331 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

58 Class Documentation

Here is the call graph for this function:

LibFile::mono

LibFile::checkTimingArcMonotonicity

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

LibFile::monomonoCheckLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 59

6.7.3.7 parse()

void LibFile::parse ()

Parses the Liberty file and extracts library information into a JSON structure.

This method handles the parsing of a Liberty file by:

1. Initializing the SI2 parser interface error handler

2. Reading the Liberty file contents

3. Extracting the library name

4. Processing second-level groups including:

• Cell definitions, which are added to the JSON structure

• Operating conditions, extracting PVT (Process, Voltage, Temperature) values

The parsed data is stored in the lib_json_ member variable, with the following structure:

• ”library_name”: Name of the library

• ”cells”: Array of cell definitions

• ”process”: Process value

• ”voltage”: Voltage value (rounded to 2 decimal places)

• ”temperature”: Temperature value

Note

This method creates local scopes to ensure proper cleanup of SI2 Iterators.

Definition at line 116 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

60 Class Documentation

Here is the call graph for this function:

LibFile::parse

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 61

Here is the caller graph for this function:

LibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.7.3.8 read()

void LibFile::read () [private]

Reads the Liberty file specified by the filename_ member variable.

This function attempts to read a Liberty file and logs the process. It measures the time taken to read
the file and logs any errors encountered during the read operation. If an error occurs, the function logs
the error and terminates the program.

• Logs the start of the read operation.

• Measures the duration of the read operation.

• Checks for specific errors (invalid name or syntax error) and logs them.

• Terminates the program with specific exit codes if errors are detected.

• Logs the completion of the read operation and the time taken.

Note

This function uses the spdlog library for logging and the si2drReadLibertyFile function for reading
the Liberty file.

Exceptions

This function will terminate the program with exit codes 301 or 401 if specific errors are
encountered.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

62 Class Documentation

Definition at line 77 of file LibFile.cpp.

Here is the caller graph for this function:

LibFile::readLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.7.3.9 spice()

void LibFile::spice (

const int chain_length,

const std::vector< std::string > & cell_names,

const std::string & verilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE netlist for the library based on a temporary Verilog file, using the V2LVS tool.

This function automates the process of converting a Verilog representation of the library into a SPICE
netlist suitable for simulation. It involves the following steps:

1. Generates a temporary Verilog file using the verilog method.

2. Checks for the availability of the V2LVS tool in the system's PATH.

3. Constructs and executes the V2LVS command with appropriate options to generate an initial SPICE
netlist.

4. Post-processes the generated SPICE netlist to adjust global signals using the modifySpiceNetlist

method.

5. Logs the progress and any errors encountered during the process.

Parameters

chain_length The length of the transistor chain for Verilog generation.
cell_names A vector of cell names to be included in the Verilog generation.
verilog_lib_file The path to the Verilog library file used by V2LVS for pin order information.
spice_lib_file The path to the SPICE library file to be included in the generated SPICE netlist.Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 63

Note

The function assumes that the verilog method is available and correctly generates a temporary
Verilog file.

The V2LVS tool must be installed and accessible in the system's PATH for this function to work
correctly.

The generated SPICE netlist is post-processed to adjust global signals.

Temporary files (Verilog and intermediate SPICE) are kept for debugging purposes.

Definition at line 1279 of file LibFile.cpp.

Here is the call graph for this function:

LibFile::spice

LibFile::modifySpiceNetlist

LibFile::verilog

LibFile::generateRCLines

LibFile::splitString

LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

64 Class Documentation

Here is the caller graph for this function:

LibFile::spicespiceLibFilemain

6.7.3.10 splitString()

std::vector< std::string > LibFile::splitString (

const std::string & s) [private]

Splits a string into a vector of tokens, using whitespace as the delimiter.

This function takes a string as input and splits it into a vector of strings, where each element in the
vector represents a token from the original string. Whitespace characters (spaces, tabs, newlines, etc.)
are used as delimiters to separate the tokens.

Parameters

s The string to be split.

Returns

A vector of strings, where each string is a token from the input string.

Definition at line 889 of file LibFile.cpp.

Here is the caller graph for this function:

LibFile::splitStringLibFile::modifySpiceNetlistLibFile::spicespiceLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 65

6.7.3.11 supercell()

void LibFile::supercell (

const int chain_length,

const std::vector< std::string > & cell_names)

Creates supercells based on standard cells in the library file.

This method creates supercells by combining standard cells in chains. For each input-output pin pair of
a cell, it creates a supercell entry with naming format: <cellname>X<chain_length><input_pin>←↩

__<output_pin>. The results are written to a .map file.

For sequential cells (with clock pins), the chain length is always set to 1 regardless of the requested chain
length.

Parameters

chain_length The length of the chain for combinational cells
cell_names Vector of specific cell names to process. If empty, all cells will be processed.

Note

Before creating supercells, this method checks for the existence of a JSON representation of the
Liberty file and parses it if not found.

The method will report any requested cells that were not found in the library.

Definition at line 460 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

66 Class Documentation

Here is the call graph for this function:

LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

LibFile::supercell

supercellLibFile

LibFile::verilogmain LibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 67

6.7.3.12 verilog()

void LibFile::verilog (

const int chain_length,

const std::vector< std::string > & cell_names)

Generates Verilog files for cell validation based on the library file.

This function creates Verilog modules for each cell in the specified chain and generates a top-level module
that connects them all together. The process involves:

1. Creating supercells based on the specified chain length and cell names

2. Reading the mapping file to identify supercell name relationships

3. Generating individual Verilog modules for each supercell, handling both sequential and combina-
tional cells differently

4. Creating ANSI-style port definitions for each module

5. Using the slang library to build proper syntax trees for Verilog modules

6. Creating a top-level module that instantiates all the individual modules

7. Writing the complete Verilog output to the output file

Sequential cells are instantiated once, while combinational cells are instantiated multiple times based on
the specified chain length.

Parameters

chain_length The number of times to chain combinational cells together
cell_names Vector of cell names to include in the Verilog generation

Note

The function writes a temporary file during processing that might not be removed when the function
completes (commented out cleanup code).

Definition at line 614 of file LibFile.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

68 Class Documentation

Here is the call graph for this function:

LibFile::verilog LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

LibFile::verilog

LibFile::spice

verilogLibFile

spiceLibFile

main

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 69

6.7.3.13 writeJsonToFile()

void LibFile::writeJsonToFile ()

Writes the JSON data stored in the object to a file.

This method opens the file specified by jsonname_ and writes the content of lib_json_ with an inden-
tation of 2 spaces. If the file cannot be opened, an error message is logged. Upon successful writing, an
informational message is logged.

Exceptions

None directly, but std::ofstream operations may throw exceptions

Definition at line 46 of file LibFile.cpp.

Here is the caller graph for this function:

LibFile::writeJsonToFile

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.7.4 Member Data Documentation

6.7.4.1 basename_

std::string LibFile::basename_

Definition at line 29 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

70 Class Documentation

6.7.4.2 err_

si2drErrorT LibFile::err_ [private]

Definition at line 46 of file LibFile.hpp.

6.7.4.3 filename_

std::string LibFile::filename_

Definition at line 30 of file LibFile.hpp.

6.7.4.4 filepath_

std::filesystem::path LibFile::filepath_

Definition at line 28 of file LibFile.hpp.

6.7.4.5 jsonname_

std::string LibFile::jsonname_ = ""

Definition at line 32 of file LibFile.hpp.

6.7.4.6 lib_json_

json LibFile::lib_json_ = json::object()

Definition at line 34 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.7 LibFile Class Reference 71

6.7.4.7 libname_

std::string LibFile::libname_ = ""

Definition at line 31 of file LibFile.hpp.

6.7.4.8 logger_

std::shared_ptr<spdlog::logger> LibFile::logger_

Definition at line 27 of file LibFile.hpp.

6.7.4.9 loggername_

std::string LibFile::loggername_ = ""

Definition at line 33 of file LibFile.hpp.

6.7.4.10 process_

int LibFile::process_ = 0 [private]

Definition at line 47 of file LibFile.hpp.

6.7.4.11 temperature_

int LibFile::temperature_ = 0 [private]

Definition at line 49 of file LibFile.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

72 Class Documentation

6.7.4.12 voltage_

float LibFile::voltage_ = 0.0 [private]

Definition at line 48 of file LibFile.hpp.

The documentation for this class was generated from the following files:

• include/LibFile.hpp
• src/LibFile.cpp

6.8 LibGroup Class Reference

#include <LibGroup.hpp>

Public Member Functions

• LibGroup (si2drGroupIdT group, si2drErrorT &err)
• ∼LibGroup ()
• std::string getName ()
• std::string getType ()
• si2drAttrsIdT getAttrs ()
• si2drGroupsIdT getGroups ()

Private Attributes

• si2drGroupIdT group_
• si2drErrorT & err_

6.8.1 Detailed Description

Definition at line 8 of file LibGroup.hpp.

6.8.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.8 LibGroup Class Reference 73

6.8.2.1 LibGroup()

LibGroup::LibGroup (

si2drGroupIdT group,

si2drErrorT & err)

Definition at line 3 of file LibGroup.cpp.

6.8.2.2 ∼LibGroup()

LibGroup::∼LibGroup ()

Definition at line 5 of file LibGroup.cpp.

6.8.3 Member Function Documentation

6.8.3.1 getAttrs()

si2drAttrsIdT LibGroup::getAttrs ()

Definition at line 19 of file LibGroup.cpp.

Here is the caller graph for this function:

LibGroup::getAttrs

generateCellJson

LibFile::parse

generateLutJson

generatePowerJson

generatePinJson

generateTimingJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

74 Class Documentation

6.8.3.2 getGroups()

si2drGroupsIdT LibGroup::getGroups ()

Definition at line 21 of file LibGroup.cpp.

Here is the caller graph for this function:

LibGroup::getGroups

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.8.3.3 getName()

std::string LibGroup::getName ()

Definition at line 7 of file LibGroup.cpp.

Here is the caller graph for this function:

LibGroup::getNamegenerateCellJson

LibFile::parse

generatePinJson

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 75

6.8.3.4 getType()

std::string LibGroup::getType ()

Definition at line 14 of file LibGroup.cpp.

Here is the caller graph for this function:

LibGroup::getType

generateCellJson

LibFile::parse

generatePinJson

generatePowerJson

generateTimingJson
LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilog
LibFile::spice

verilogLibFile

spiceLibFile

6.8.4 Member Data Documentation

6.8.4.1 err_

si2drErrorT& LibGroup::err_ [private]

Definition at line 19 of file LibGroup.hpp.

6.8.4.2 group_

si2drGroupIdT LibGroup::group_ [private]

Definition at line 18 of file LibGroup.hpp.

The documentation for this class was generated from the following files:

• include/LibGroup.hpp
• src/LibGroup.cpp

6.9 LibraryComparator Class Reference

#include <LibraryComparator.hpp>

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

76 Class Documentation

Public Member Functions

• LibraryComparator (LibFile &ref_libfile, LibFile &comp_libfile, double reltol, double abstol)
Constructor for the LibraryComparator class.

• void generateReport (const std::string &output_file)
Generates a comparison report between the reference and comparison libraries.

Public Attributes

• std::filesystem::path ref_lib_path_
• std::filesystem::path comp_lib_path_

Private Member Functions

• void compareCell (const std::string &cell_name, const json &ref_cell, const json &comp_cell,
Table &table)

Compares the output pins of a cell between a reference JSON and a comparison JSON.

• void comparePin (const std::string &cell_name, const std::string &pin_name, const json &ref_pin,
const json &comp_pin, Table &table)

Compares the timing arcs of a given pin between a reference JSON and a comparison JSON.

• void compareTimingArc (const std::string &cell_name, const std::string &pin_name, const std←↩

::string &timing_type, const json &ref_timing_arc, const json &comp_timing_arc, Table &table)
Compares a timing arc between two JSON objects.

• void compareLut (const std::string &cell_name, const std::string &pin_name, const std::string
&timing_type, const std::string &related_pin, const std::string &arc_name, const json &ref_lut,
const json &comp_lut, Table &table)

Compares lookup tables (LUTs) between reference and comparison libraries for a specific timing arc.

Private Attributes

• json ref_json_
• json comp_json_
• double reltol_
• double abstol_

6.9.1 Detailed Description

Definition at line 19 of file LibraryComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 77

6.9.2 Constructor & Destructor Documentation

6.9.2.1 LibraryComparator()

LibraryComparator::LibraryComparator (

LibFile & ref_libfile,

LibFile & comp_libfile,

double reltol,

double abstol)

Constructor for the LibraryComparator class.

Initializes a LibraryComparator object by loading JSON data from reference and comparison library files.
If JSON files don't exist, parses the library files first and creates the JSON files.

The constructor performs the following steps:

1. Looks for reference JSON file, parses library file if not found

2. Loads reference JSON data into ref_json_ member

3. Looks for comparison JSON file, parses library file if not found

4. Loads comparison JSON data into comp_json_ member

5. Stores file paths and initializes tolerance values for comparison

Parameters

ref_libfile Reference library file object
comp_libfile Comparison library file object
reltol Relative tolerance for numerical comparisons (default defined elsewhere)
abstol Absolute tolerance for numerical comparisons (default defined elsewhere)

Definition at line 21 of file LibraryComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

78 Class Documentation

Here is the call graph for this function:

LibraryComparator::
LibraryComparator

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

6.9.3 Member Function Documentation

6.9.3.1 compareCell()

void LibraryComparator::compareCell (

const std::string & cell_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 79

const json & ref_cell,

const json & comp_cell,

Table & table) [private]

Compares the output pins of a cell between a reference JSON and a comparison JSON.

This function iterates through the output pins of the comparison cell and checks if each pin exists in the
reference cell. If a pin is found in both cells, it calls the comparePin function to compare the details of
the pin. If a pin is not found in the reference cell, a warning is logged. If the comparison cell does not
contain any output pins, an informational message is logged.

Parameters

cell_name The name of the cell being compared.
ref_cell The reference JSON object containing the cell data.
comp_cell The comparison JSON object containing the cell data.
table The table object where the comparison results are stored.

Definition at line 301 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator::
compareCell

LibraryComparator::
comparePin

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Here is the caller graph for this function:

LibraryComparator::
compareCell

LibraryComparator::
generateReportcompareLibFilesmain

6.9.3.2 compareLut()

void LibraryComparator::compareLut (

const std::string & cell_name,

const std::string & pin_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

80 Class Documentation

const std::string & timing_type,

const std::string & related_pin,

const std::string & arc_name,

const json & ref_lut,

const json & comp_lut,

Table & table) [private]

Compares lookup tables (LUTs) between reference and comparison libraries for a specific timing arc.

This function compares the lookup table values between reference and comparison libraries for a given
timing arc, checking the consistency of indices and values. It verifies that the indices match between
libraries and then compares each value in the LUT against relative and absolute tolerance thresholds.
Any discrepancies that exceed the tolerance limits are recorded in the provided table.

Parameters

cell_name The name of the cell containing the LUT.
pin_name The name of the pin associated with the LUT.
timing_type The timing type of the arc (e.g., ”rise_transition”, ”fall_transition”).
related_pin The related pin for the timing arc.
arc_name The name of the specific timing arc being compared.
ref_lut The lookup table from the reference library (in JSON format).
comp_lut The lookup table from the comparison library (in JSON format).
table Table object to store comparison results for any mismatches found.

Note

The function logs various information/warning/error messages:

• Logs index mismatches as warnings

• Logs value mismatches as debug messages

• Logs format errors in LUT structure as errors

• Records values exceeding tolerance in the provided table

The comparison uses both relative tolerance (reltol_) and absolute tolerance (abstol_) to determine
if values differ significantly.

Definition at line 98 of file LibraryComparator.cpp.

Here is the caller graph for this function:

LibraryComparator::
compareLut

LibraryComparator::
compareTimingArc

LibraryComparator::
comparePin

LibraryComparator::
compareCell

LibraryComparator::
generateReportcompareLibFilesmain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 81

6.9.3.3 comparePin()

void LibraryComparator::comparePin (

const std::string & cell_name,

const std::string & pin_name,

const json & ref_pin,

const json & comp_pin,

Table & table) [private]

Compares the timing arcs of a given pin between a reference JSON and a comparison JSON.

This function iterates through the timing arcs of the comparison pin and looks for matching timing types
in the reference pin. If a matching timing type is found, it calls the compareTimingArc function to
compare the timing arcs. If a timing type is not found in the reference JSON, a warning is logged.

Parameters

cell_name The name of the cell containing the pin.
pin_name The name of the pin to compare.
ref_pin The reference JSON object containing the pin's data.
comp_pin The comparison JSON object containing the pin's data.
table A reference to a Table object where comparison results are stored.

Definition at line 261 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator::
comparePin

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Here is the caller graph for this function:

LibraryComparator::
comparePin

LibraryComparator::
compareCell

LibraryComparator::
generateReportcompareLibFilesmain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

82 Class Documentation

6.9.3.4 compareTimingArc()

void LibraryComparator::compareTimingArc (

const std::string & cell_name,

const std::string & pin_name,

const std::string & timing_type,

const json & ref_timing_arc,

const json & comp_timing_arc,

Table & table) [private]

Compares a timing arc between two JSON objects.

This function compares a specific timing arc (e.g., cell_rise, cell_fall, rise_transition, fall_transition)
between a reference JSON object and a comparison JSON object. It extracts the related pin from the
reference timing arc and iterates through a predefined list of arc names. If an arc name is found in the
comparison timing arc, it checks if the same arc name exists in the reference timing arc. If both exist,
it calls the compareLut function to compare the LUT data associated with the arc. If the arc name is
found in the comparison JSON but not in the reference JSON, a warning message is logged.

Parameters

cell_name The name of the cell.
pin_name The name of the pin.
timing_type The type of timing (e.g., ”combinational”, ”sequential”).
ref_timing_arc The reference JSON object containing the timing arc information.
comp_timing_arc The comparison JSON object containing the timing arc information.
table The table to store comparison results.

Definition at line 220 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.9 LibraryComparator Class Reference 83

Here is the caller graph for this function:

LibraryComparator::
compareTimingArc

LibraryComparator::
comparePin

LibraryComparator::
compareCell

LibraryComparator::
generateReportcompareLibFilesmain

6.9.3.5 generateReport()

void LibraryComparator::generateReport (

const std::string & output_file)

Generates a comparison report between the reference and comparison libraries.

This function generates a detailed comparison report between the reference library and the comparison
library. The report includes metadata such as the reference and comparison library paths, absolute and
relative tolerances, and the application details. It also includes a legend explaining various symbols used
in the report.

The function iterates through each cell in the comparison library, compares it with the corresponding cell
in the reference library, and generates a table of differences. If there are any differences, it calculates
summary statistics such as the average and maximum differences, and the number of outliers. The
results are written to the specified output file in either Markdown or plain text format.

Parameters

output_file The path to the output file where the report will be written.

Definition at line 343 of file LibraryComparator.cpp.

Here is the call graph for this function:

LibraryComparator::
generateReport

LibraryComparator::
compareCell

LibraryComparator::
comparePin

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

84 Class Documentation

Here is the caller graph for this function:

LibraryComparator::
generateReportcompareLibFilesmain

6.9.4 Member Data Documentation

6.9.4.1 abstol_

double LibraryComparator::abstol_ [private]

Definition at line 30 of file LibraryComparator.hpp.

6.9.4.2 comp_json_

json LibraryComparator::comp_json_ [private]

Definition at line 28 of file LibraryComparator.hpp.

6.9.4.3 comp_lib_path_

std::filesystem::path LibraryComparator::comp_lib_path_

Definition at line 23 of file LibraryComparator.hpp.

6.9.4.4 ref_json_

json LibraryComparator::ref_json_ [private]

Definition at line 27 of file LibraryComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 85

6.9.4.5 ref_lib_path_

std::filesystem::path LibraryComparator::ref_lib_path_

Definition at line 22 of file LibraryComparator.hpp.

6.9.4.6 reltol_

double LibraryComparator::reltol_ [private]

Definition at line 29 of file LibraryComparator.hpp.

The documentation for this class was generated from the following files:

• include/LibraryComparator.hpp
• src/LibraryComparator.cpp

6.10 LogicComparator Class Reference

#include <LogicComparator.hpp>

Public Member Functions

• LogicComparator (const std::map< std::string, std::string > &ref_outpin_map, const std::map<
std::string, std::string > &comp_outpin_map, const std::string &cell_name)

• void logic ()
This function demonstrates the usage of the exprtk library to evaluate a boolean logic expression.

• std::string preprocessExpression (const std::string &input_expr)
Preprocesses a logical expression string to prepare it for evaluation.

• bool extractVariables (const std::string &expr1, const std::string &expr2, std::vector< std::string
> &sorted_vars)

Extracts and validates variables from two expressions, ensuring they match.

• void compareSingleExpressionPair (const std::string &ref_expression_processed, const std::string
&comp_expression_processed, const std::vector< std::string > &sorted_vars, PinComparisonResult
&result)

Compares two preprocessed logic expression strings for equivalence. Internal helper function.

• void compareCellLogic ()
Compares logic for all output pins defined in the input maps, and stores results in all_pin_results_.

• void generateReport (const std::string &output_file)
Generates a comparison report file based on cell logic comparison results.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

86 Class Documentation

Private Attributes

• std::map< std::string, std::string > ref_outpin_map_
• std::map< std::string, std::string > comp_outpin_map_
• std::string cell_name_
• std::map< std::string, PinComparisonResult > all_pin_results_

6.10.1 Detailed Description

Definition at line 38 of file LogicComparator.hpp.

6.10.2 Constructor & Destructor Documentation

6.10.2.1 LogicComparator()

LogicComparator::LogicComparator (

const std::map< std::string, std::string > & ref_outpin_map,

const std::map< std::string, std::string > & comp_outpin_map,

const std::string & cell_name)

Definition at line 3 of file LogicComparator.cpp.

6.10.3 Member Function Documentation

6.10.3.1 compareCellLogic()

void LogicComparator::compareCellLogic ()

Compares logic for all output pins defined in the input maps, and stores results in all_pin_results_.

Compares the logic expressions for each output pin of a cell between a reference and a comparison design.

This method performs a detailed comparison of the logic expressions associated with each output pin of
a cell. It iterates through each unique pin name found in both the reference and comparison designs,
retrieves their corresponding logic expressions, preprocesses them, extracts and validates the variables
used, and then compares the processed expressions. The results of each pin comparison, including any
errors or discrepancies, are stored in the all_pin_results_ map.

The comparison process includes the following steps:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 87

1. Pin Collection: Collects all unique pin names from both the reference (ref_outpin_map_) and
comparison (comp_outpin_map_) maps.

2. Iteration: Iterates through each unique pin name.

3. Expression Retrieval: Retrieves the raw logic expressions for the current pin from both the
reference and comparison maps. If a pin is missing in either map, an error is logged, and the
comparison is marked as impossible for that pin.

4. Preprocessing: Preprocesses the raw expressions to simplify them and remove any irrelevant
characters or formatting. If preprocessing results in an empty expression, an error is logged, and
the comparison is marked as impossible.

5. Variable Extraction and Validation: Extracts the variables used in both expressions and validates
that the sets of variables match. If the variable sets do not match, an error is logged, and the
comparison is marked as impossible.

6. Expression Comparison: Compares the preprocessed expressions using the extracted variables.
This step determines whether the logic functions represented by the expressions are equivalent.

7. Result Storage: Stores the detailed results of the pin comparison, including the raw and processed
expressions, any errors encountered, and the comparison result, in the all_pin_results_ map.

Note

The spdlog library is used for logging information, warnings, and errors throughout the comparison
process.

The preprocessExpression method is used to simplify the raw logic expressions before compar-
ison.

The extractVariables method is used to extract and validate the variables used in the logic
expressions.

The compareSingleExpressionPair method is used to compare the preprocessed expressions
and determine whether they are equivalent.

See also

preprocessExpression

extractVariables

compareSingleExpressionPair

Definition at line 812 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

88 Class Documentation

Here is the call graph for this function:

LogicComparator::compare
CellLogic

LogicComparator::compare
SingleExpressionPair

LogicComparator::extract
Variables

LogicComparator::preprocess
Expression

isIdentifier

isOperator

Here is the caller graph for this function:

LogicComparator::compare
CellLogicfuncLibFilemain

6.10.3.2 compareSingleExpressionPair()

void LogicComparator::compareSingleExpressionPair (

const std::string & ref_expression_processed,

const std::string & comp_expression_processed,

const std::vector< std::string > & sorted_vars,

PinComparisonResult & result)

Compares two preprocessed logic expression strings for equivalence. Internal helper function.

Compares two boolean expressions for logical equivalence using a truth table.

Template Parameters

T The numeric type used by ExprTk (e.g., double, float).

Parameters

ref_expression_processed The preprocessed reference logic expression.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 89

Parameters

comp_expression_processed The preprocessed comparison logic expression.
sorted_vars A sorted vector of unique variable names common to both expressions.
result Reference to a PinComparisonResult object to store detailed results.

This function takes two processed boolean expressions (ref_expression_processed and comp_expression←↩

_processed), a sorted list of variable names (sorted_vars), and a PinComparisonResult struct to store
the results. It evaluates both expressions for all possible combinations of variable values and compares
the resulting truth tables.

The function uses the ExprTk library to parse and evaluate the boolean expressions. It generates a truth
table for each expression and compares the results. If the truth tables are identical, the expressions are
considered logically equivalent.

Parameters

ref_expression_processed The processed reference boolean expression.
comp_expression_processed The processed comparison boolean expression.
sorted_vars A sorted vector of variable names used in the expressions.
result A PinComparisonResult struct to store the comparison results,

including processed expressions, compilation status, equivalence, error
messages, and the generated truth tables.

Note

The function limits the number of variables to 20 to prevent excessively large truth tables. It also
performs overflow checking on the number of combinations.

The function uses spdlog for logging debug, warning, and error messages.

The function assumes that the input expressions are valid boolean expressions containing only the
variables listed in sorted_vars.

Definition at line 553 of file LogicComparator.cpp.

Here is the caller graph for this function:

LogicComparator::compare
SingleExpressionPair

LogicComparator::compare
CellLogicfuncLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

90 Class Documentation

6.10.3.3 extractVariables()

bool LogicComparator::extractVariables (

const std::string & expr1_raw,

const std::string & expr2_raw,

std::vector< std::string > & sorted_vars)

Extracts and validates variables from two expressions, ensuring they match.

This function parses two raw expression strings (expr1_raw and expr2_raw) to identify potential variable
names. It uses a regular expression to find identifiers and then validates them against a set of rules:

1. The identifier must be a valid identifier as determined by the isIdentifier function.

2. The identifier must not be a keyword or function name defined in the keywords set.

The function compares the sets of validated variables from both expressions. If the sets are identical, the
variables are extracted, sorted alphabetically, and stored in the sorted_vars vector. If the sets differ,
an error is reported, and the differences between the sets are logged.

Parameters

expr1_raw The raw string representation of the first expression.
expr2_raw The raw string representation of the second expression.
sorted_vars A vector to store the sorted list of unique variable names if the variable sets from both

expressions match. This vector is cleared if the sets do not match.

Returns

true if the variable sets from both expressions match, indicating that the sorted_vars vector
contains the sorted list of unique variable names. false if the variable sets do not match, indicating
an error.

Note

The isIdentifier function is used to validate potential variable names.

The keywords set contains a list of reserved words that cannot be used as variable names.

The function uses spdlog for logging debug, trace, info, and warning messages.

Definition at line 327 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 91

Here is the call graph for this function:

LogicComparator::extract
Variables isIdentifier

Here is the caller graph for this function:

LogicComparator::extract
Variables

LogicComparator::compare
CellLogicfuncLibFilemain

6.10.3.4 generateReport()

void LogicComparator::generateReport (

const std::string & output_file)

Generates a comparison report file based on cell logic comparison results.

Generates a comprehensive report comparing the logic equivalence of a cell's reference and comparison
expressions.

Parameters

output_file Path to the output report file.

This function performs the following steps:

1. Initialization: Sets up logging and determines the output format (Markdown or plain text) based
on the file extension.

2. File Handling: Opens the specified output file in append mode, creating it if it doesn't exist.
Handles potential file opening errors.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

92 Class Documentation

3. Report Header: Writes a header section to the report, including the cell name, application version,
author, and timestamp.

4. Legend Generation: Creates a legend explaining the status symbols used in the report (e.g., [OK],
[NO], [NA]).

5. Table Generation: Creates tables for reference pin functions, comparison pin functions, and the
legend.

6. Pin Result Processing: Iterates through the results for each pin, generating detailed information
including:

• Pin Name

• Reference and Comparison Truth Tables (if available)

• Comparison Summary Table:

– Status (Logic Equivalence)

– Raw and Processed Expressions

– Compilation Status

– Error Messages (if any)

7. Output: Exports the generated tables and pin results to the output file in the determined format
(Markdown or plain text).

8. Closure: Closes the output file and logs the completion of the report generation.

Parameters

output_file The path to the output report file. If the file extension is ”.md”, the report will be
generated in Markdown format; otherwise, it will be generated in plain text.

Note

The function uses spdlog for logging and relies on several helper classes/structs:

• Table: For creating formatted tables.

• MarkdownExporter: For exporting tables to Markdown format.

• LogicComparator::PinResult: A struct containing the results of the logic comparison for
a single pin.

The function appends to the output file if it already exists.

Definition at line 974 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 93

Here is the caller graph for this function:

LogicComparator::generate
ReportfuncLibFilemain

6.10.3.5 logic()

void LogicComparator::logic ()

This function demonstrates the usage of the exprtk library to evaluate a boolean logic expression.

It defines a boolean expression ”not(A and B) or C” and evaluates it for all possible combinations of
boolean values for the variables A, B, and C. The results are then printed to the console in a tabular
format.

The function utilizes the exprtk library for:

• Defining a symbol table to hold the variables A, B, and C.

• Creating an expression object and registering the symbol table with it.

• Compiling the boolean expression string into the expression object.

• Iterating through all possible boolean combinations for A, B, and C.

• Assigning the boolean values to the variables in the symbol table.

• Evaluating the expression using expression.value().

• Printing the input values and the result to the console.

Definition at line 24 of file LogicComparator.cpp.

Here is the caller graph for this function:

LogicComparator::logicfuncLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

94 Class Documentation

6.10.3.6 preprocessExpression()

std::string LogicComparator::preprocessExpression (

const std::string & input_expr)

Preprocesses a logical expression string to prepare it for evaluation.

This function performs several steps to transform the input expression:

1. Trims leading/trailing whitespace.

2. Replaces the logical NOT operator '!' with ” not ” (except for '!=').

3. Adds spaces around operators (+, ∧, ∗) and parentheses.

4. Replaces symbolic operators (+, ∧, ∗) with their keyword equivalents (or, xor, and).

5. Tokenizes the expression based on spaces.

6. Inserts implied 'and' operators between operands where necessary. For example, ”A B” becomes
”A and B”.

7. Handles 'not Identifier' sequences by converting them to 'not(Identifier)'.

8. Reconstructs the final expression string from the processed tokens, adding spaces appropriately.

9. Performs a final cleanup to consolidate multiple spaces and trim the result.

Parameters

input_expr The input logical expression string.

Returns

The preprocessed logical expression string, ready for evaluation. Returns an empty string if the
input is empty or if no tokens are found after processing.

Note

The function uses spdlog for debugging and tracing.

The function assumes the existence of helper functions isIdentifier and isOperator to classify
tokens.

Definition at line 128 of file LogicComparator.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.10 LogicComparator Class Reference 95

Here is the call graph for this function:

LogicComparator::preprocess
Expression

isIdentifier

isOperator

Here is the caller graph for this function:

LogicComparator::preprocess
Expression

LogicComparator::compare
CellLogicfuncLibFilemain

6.10.4 Member Data Documentation

6.10.4.1 all_pin_results_

std::map<std::string, PinComparisonResult> LogicComparator::all_pin_results_ [private]

Definition at line 86 of file LogicComparator.hpp.

6.10.4.2 cell_name_

std::string LogicComparator::cell_name_ [private]

Definition at line 85 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

96 Class Documentation

6.10.4.3 comp_outpin_map_

std::map<std::string, std::string> LogicComparator::comp_outpin_map_ [private]

Definition at line 84 of file LogicComparator.hpp.

6.10.4.4 ref_outpin_map_

std::map<std::string, std::string> LogicComparator::ref_outpin_map_ [private]

Definition at line 83 of file LogicComparator.hpp.

The documentation for this class was generated from the following files:

• include/LogicComparator.hpp
• src/LogicComparator.cpp

6.11 LogicExtractor Class Reference

#include <LogicExtractor.hpp>

Inheritance diagram for LogicExtractor:

LogicExtractor

slang::syntax::SyntaxVisitor
< LogicExtractor >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 97

Collaboration diagram for LogicExtractor:

LogicExtractor

slang::syntax::SyntaxVisitor
< LogicExtractor >

Public Member Functions

• LogicExtractor (const std::string &targetCell)
• void handle (const slang::syntax::ModuleDeclarationSyntax &module)

Handles a module declaration syntax node.

• void handle (const slang::syntax::PortDeclarationSyntax &portDecl)
Handles a port declaration syntax node.

• void handle (const slang::syntax::NonAnsiPortListSyntax &portList)
Handles a non-ANSI port list in a module.

• void handle (const slang::syntax::NetDeclarationSyntax &netDecl)
Handles a net declaration syntax node.

• void handle (const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst)
Handles the extraction of logic gate information from a primitive instantiation syntax node.

• const std::unordered_map< std::string, GateInfo > & getExtractedGates () const
• const std::unordered_set< std::string > & getPrimaryInputs () const
• const std::unordered_set< std::string > & getPrimaryOutputs () const
• const std::unordered_set< std::string > & getInternalWires () const
• std::map< std::string, std::string > getLogicExpressions ()

Extracts logic expressions for all primary output ports of the target cell.

Private Member Functions

• std::string deriveLogicRecursive (const std::string &signalName)
Recursively derives the logic expression for a given signal.

• std::string formatExpression (const GateInfo &gateInfo, const std::vector< std::string > &input←↩

Exprs)
Formats a logic expression based on the gate type and input expressions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

98 Class Documentation

Private Attributes

• const std::string & targetCell_
• bool inTargetModule_
• bool parsingComplete_
• std::unordered_set< std::string > primaryInputs_
• std::unordered_set< std::string > primaryOutputs_
• std::unordered_set< std::string > internalWires_
• std::unordered_map< std::string, std::string > portDirections_
• std::unordered_map< std::string, GateInfo > gateOutputDrivers_
• std::unordered_map< std::string, std::string > logicCache_

6.11.1 Detailed Description

Definition at line 17 of file LogicExtractor.hpp.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 LogicExtractor()

LogicExtractor::LogicExtractor (

const std::string & targetCell) [inline], [explicit]

Definition at line 20 of file LogicExtractor.hpp.

6.11.3 Member Function Documentation

6.11.3.1 deriveLogicRecursive()

std::string LogicExtractor::deriveLogicRecursive (

const std::string & signalName) [private]

Recursively derives the logic expression for a given signal.

This function traces back the signal to its driving gates and primary inputs, constructing a logic expression
that represents the signal's behavior. It uses memoization to cache previously computed expressions,
avoiding redundant calculations.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 99

Parameters

signalName The name of the signal for which to derive the logic expression.

Returns

A string representing the logic expression for the signal.

Exceptions

std::runtime_error if the signal is not a primary input, a known wire, or driven by a recognized
gate/assignment. Also thrown if an empty input signal name is encountered or
if an internal wire has no identified driver.

The function operates in the following steps:

1. Check Cache (Memoization): If the logic expression for the signal is already cached in logic←↩

Cache_, it is immediately returned.

2. Base Case: Is it a primary input? If the signal is a primary input (present in primaryInputs_),
its logic expression is simply its own name.

3. Recursive Step: Is it driven by a gate? If the signal is driven by a gate (present in gate←↩

OutputDrivers_), the function recursively derives the logic expressions for all input signals of the
gate. These input expressions are then used to format the overall expression for the current signal
based on the gate type.

4. Handle Assign statements: (Currently not implemented but reserved for future use).

5. Error Case: If the signal is not found in any of the above categories, it indicates an error. An
exception is thrown, indicating that the signal is either an undriven internal wire or an unknown
signal.

Definition at line 510 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

100 Class Documentation

Here is the caller graph for this function:

LogicExtractor::deriveLogic
Recursive

LogicExtractor::getLogic
ExpressionsextractLogicFromVerilogfuncLibFilemain

6.11.3.2 formatExpression()

std::string LogicExtractor::formatExpression (

const GateInfo & gateInfo,

const std::vector< std::string > & inputExprs) [private]

Formats a logic expression based on the gate type and input expressions.

This function takes a GateInfo structure describing the gate and a vector of input expressions (strings)
and constructs a logic expression string representing the gate's operation. It handles AND, NAND, OR,
NOR, XOR, XNOR, NOT, and BUF gates. It uses '∗', '+', '∧', and '!' operators for AND, OR, XOR, and
NOT respectively. If the gate type is unsupported, or if the number of inputs is incorrect for NOT/BUF
gates, or if a gate requiring inputs receives none, an error string is returned, and a warning is logged.

Parameters

gateInfo A GateInfo struct containing information about the gate, including its type
(slang::parsing::TokenKind) and name.

inputExprs A vector of strings representing the input expressions to the gate.

Returns

A string representing the formatted logic expression, or an error string if formatting fails due to
unsupported gate type or incorrect number of inputs.

Definition at line 584 of file LogicExtractor.cpp.

Here is the caller graph for this function:

LogicExtractor::formatExpressionLogicExtractor::deriveLogic
Recursive

LogicExtractor::getLogic
ExpressionsextractLogicFromVerilogfuncLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 101

6.11.3.3 getExtractedGates()

const std::unordered_map< std::string, GateInfo > & LogicExtractor::getExtractedGates () const [inline]

Definition at line 37 of file LogicExtractor.hpp.

Here is the caller graph for this function:

LogicExtractor::getExtracted
GatesextractAndPrintNetlistInfo

6.11.3.4 getInternalWires()

const std::unordered_set< std::string > & LogicExtractor::getInternalWires () const [inline]

Definition at line 42 of file LogicExtractor.hpp.

Here is the caller graph for this function:

LogicExtractor::getInternal
WiresextractAndPrintNetlistInfo

6.11.3.5 getLogicExpressions()

std::map< std::string, std::string > LogicExtractor::getLogicExpressions ()

Extracts logic expressions for all primary output ports of the target cell.

This method iterates through the primary output ports, derives the logic expression for each, and stores
the result in a map. If an error occurs during the derivation of logic for a particular output, an error
message is stored in the map instead.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

102 Class Documentation

Returns

A map where the key is the output port name (std::string) and the value is the corresponding logic
expression (std::string). If AST parsing is not complete or the target module is not found, an empty
map is returned. If an error occurs during logic derivation for a specific output, the corresponding
value in the map will be an error message.

Definition at line 451 of file LogicExtractor.cpp.

Here is the call graph for this function:

LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

Here is the caller graph for this function:

LogicExtractor::getLogic
ExpressionsextractLogicFromVerilogfuncLibFilemain

6.11.3.6 getPrimaryInputs()

const std::unordered_set< std::string > & LogicExtractor::getPrimaryInputs () const [inline]

Definition at line 40 of file LogicExtractor.hpp.

Here is the caller graph for this function:

LogicExtractor::getPrimary
InputsextractAndPrintNetlistInfo

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 103

6.11.3.7 getPrimaryOutputs()

const std::unordered_set< std::string > & LogicExtractor::getPrimaryOutputs () const [inline]

Definition at line 41 of file LogicExtractor.hpp.

Here is the caller graph for this function:

LogicExtractor::getPrimary
OutputsextractAndPrintNetlistInfo

6.11.3.8 handle() [1/5]

void LogicExtractor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Handles a module declaration syntax node.

This function is the entry point for processing a module declaration. It checks if the module is the target
module and, if so, extracts relevant information such as primary inputs, primary outputs, and internal
wires. It also visits the children of the module node to process ports, declarations, and instances.

The function ensures that the target module is only processed once and that parsing stops after the
target module is found.

Parameters

module A reference to the module declaration syntax node.

Definition at line 18 of file LogicExtractor.cpp.

6.11.3.9 handle() [2/5]

void LogicExtractor::handle (

const slang::syntax::NetDeclarationSyntax & netDecl)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

104 Class Documentation

Handles a net declaration syntax node.

This function processes a net declaration syntax node, extracting the names of declared wires. It checks if
the current scope is within the target module and avoids adding ports again if they were already declared
as nets. The extracted wire names are added to the internal wires set.

Parameters

netDecl A reference to the NetDeclarationSyntax node to handle.

Definition at line 277 of file LogicExtractor.cpp.

6.11.3.10 handle() [3/5]

void LogicExtractor::handle (

const slang::syntax::NonAnsiPortListSyntax & portList)

Handles a non-ANSI port list in a module.

This method iterates through the ports in a non-ANSI port list, extracts the port name, determines its
direction (input, output, or inout), and adds it to the appropriate sets (primaryInputs_, primaryOutputs←↩

, internalWires). It also handles different types of port declarations, including implicit, explicit, and
empty ports.

Parameters

portList A reference to the NonAnsiPortListSyntax object representing the port list.

• Skips processing if not in the target module (inTargetModule_ is false).

• Extracts port names from ImplicitNonAnsiPortSyntax and ExplicitNonAnsiPortSyntax.

• Handles PortConcatenationSyntax by logging a warning and skipping the port.

• Skips EmptyNonAnsiPortSyntax (placeholders).

• Uses the portDirections_ map to determine the direction of each port.

• Adds ports to primaryInputs_ and internalWires_ if the direction is ”input”.

• Adds ports to primaryOutputs_ and internalWires_ if the direction is ”output”.

• Adds ports to both primaryInputs_ and primaryOutputs_ if the direction is ”inout”.

• Logs warnings for ports with unknown or missing directions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 105

• Logs warnings if the port name cannot be determined.

Note

This method does not call visitDefault.

Definition at line 179 of file LogicExtractor.cpp.

6.11.3.11 handle() [4/5]

void LogicExtractor::handle (

const slang::syntax::PortDeclarationSyntax & portDecl)

Handles a port declaration syntax node.

This method extracts information about port declarations within a SystemVerilog module, including the
port's direction (input, output, or inout) and name. It updates internal data structures to track primary
inputs, primary outputs, internal wires, and port directions.

Parameters

portDecl A reference to the PortDeclarationSyntax node being processed.

• It first checks if the current processing context is within the target module. If not, the method
returns early.

• It determines the port's direction by inspecting the port header (VariablePortHeaderSyntax or Net←↩

PortHeaderSyntax). The direction is extracted using valueText() to handle keywords represented
as text tokens.

• It iterates through the declarators in the port declaration to extract port names.

• If multiple direction declarations are found for the same port, a warning is logged, and the first
declared direction is retained.

• Based on the port's direction, the port name is added to the appropriate sets:

– primaryInputs_: For input and inout ports.

– primaryOutputs_: For output and inout ports.

– internalWires_: For all ports (input, output, inout, and ports with unknown directions).

• If a port has an unknown or missing direction, it's treated as an internal wire, and a warning is
logged.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

106 Class Documentation

• The method avoids calling visitDefault to prevent unexpected revisits of syntax nodes.

Note

The logicCache_ update is commented out, indicating it's part of a later processing step.

Warning

Logs warnings for port declarations without headers, port declarators without names, and multiple
direction declarations for the same port.

Definition at line 92 of file LogicExtractor.cpp.

6.11.3.12 handle() [5/5]

void LogicExtractor::handle (

const slang::syntax::PrimitiveInstantiationSyntax & primitiveInst)

Handles the extraction of logic gate information from a primitive instantiation syntax node.

This method processes a primitive instantiation, extracting the gate type, input signals, and output
signal. It populates the gateOutputDrivers_ map, which stores the driving gate information for each
output signal. It also identifies internal wires and checks for multiple drivers on the same signal.

Parameters

primitiveInst A reference to the PrimitiveInstantiationSyntax node representing the gate instance.

Definition at line 309 of file LogicExtractor.cpp.

6.11.4 Member Data Documentation

6.11.4.1 gateOutputDrivers_

std::unordered_map<std::string, GateInfo> LogicExtractor::gateOutputDrivers_ [private]

Definition at line 63 of file LogicExtractor.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.11 LogicExtractor Class Reference 107

6.11.4.2 inTargetModule_

bool LogicExtractor::inTargetModule_ [private]

Definition at line 50 of file LogicExtractor.hpp.

6.11.4.3 internalWires_

std::unordered_set<std::string> LogicExtractor::internalWires_ [private]

Definition at line 56 of file LogicExtractor.hpp.

6.11.4.4 logicCache_

std::unordered_map<std::string, std::string> LogicExtractor::logicCache_ [private]

Definition at line 66 of file LogicExtractor.hpp.

6.11.4.5 parsingComplete_

bool LogicExtractor::parsingComplete_ [private]

Definition at line 51 of file LogicExtractor.hpp.

6.11.4.6 portDirections_

std::unordered_map<std::string, std::string> LogicExtractor::portDirections_ [private]

Definition at line 60 of file LogicExtractor.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

108 Class Documentation

6.11.4.7 primaryInputs_

std::unordered_set<std::string> LogicExtractor::primaryInputs_ [private]

Definition at line 54 of file LogicExtractor.hpp.

6.11.4.8 primaryOutputs_

std::unordered_set<std::string> LogicExtractor::primaryOutputs_ [private]

Definition at line 55 of file LogicExtractor.hpp.

6.11.4.9 targetCell_

const std::string& LogicExtractor::targetCell_ [private]

Definition at line 49 of file LogicExtractor.hpp.

The documentation for this class was generated from the following files:

• include/LogicExtractor.hpp
• src/LogicExtractor.cpp

6.12 ModuleRewriter Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for ModuleRewriter:

ModuleRewriter

slang::syntax::SyntaxRewriter
< ModuleRewriter >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.12 ModuleRewriter Class Reference 109

Collaboration diagram for ModuleRewriter:

ModuleRewriter

slang::syntax::SyntaxRewriter
< ModuleRewriter >

Public Member Functions

• ModuleRewriter (const std::vector< std::string > &inputPins, const std::vector< std::string >

&outputPins, const std::pair< std::string, std::string > &supercell_entry, int instance_count, std←↩

::shared_ptr< spdlog::logger > logger)
• void handle (const slang::syntax::SyntaxNode &node)

Processes a syntax node in the module's AST.

• void handle (const slang::syntax::ModuleDeclarationSyntax &module)

Public Attributes

• std::shared_ptr< spdlog::logger > logger_

Private Attributes

• const std::vector< std::string > & inputPins_
• const std::vector< std::string > & outputPins_
• const std::string cellName_
• const std::string moduleName_
• std::map< std::string, std::string > portInfoMap_
• int depth_
• int instance_count_

6.12.1 Detailed Description

Definition at line 59 of file verilog_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

110 Class Documentation

6.12.2 Constructor & Destructor Documentation

6.12.2.1 ModuleRewriter()

ModuleRewriter::ModuleRewriter (

const std::vector< std::string > & inputPins,

const std::vector< std::string > & outputPins,

const std::pair< std::string, std::string > & supercell_entry,

int instance_count,

std::shared_ptr< spdlog::logger > logger) [inline], [explicit]

Definition at line 61 of file verilog_utils.hpp.

6.12.3 Member Function Documentation

6.12.3.1 handle() [1/2]

void ModuleRewriter::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 406 of file verilog_utils.cpp.

6.12.3.2 handle() [2/2]

void ModuleRewriter::handle (

const slang::syntax::SyntaxNode & node)

Processes a syntax node in the module's AST.

This method is called for each syntax node during the traversal of the AST. It logs debug information
about the current node and continues processing its child nodes by recursively calling the appropriate
visit methods.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.12 ModuleRewriter Class Reference 111

Parameters

node The syntax node to process

Definition at line 396 of file verilog_utils.cpp.

6.12.4 Member Data Documentation

6.12.4.1 cellName_

const std::string ModuleRewriter::cellName_ [private]

Definition at line 75 of file verilog_utils.hpp.

6.12.4.2 depth_

int ModuleRewriter::depth_ [private]

Definition at line 78 of file verilog_utils.hpp.

6.12.4.3 inputPins_

const std::vector<std::string>& ModuleRewriter::inputPins_ [private]

Definition at line 73 of file verilog_utils.hpp.

6.12.4.4 instance_count_

int ModuleRewriter::instance_count_ [private]

Definition at line 79 of file verilog_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

112 Class Documentation

6.12.4.5 logger_

std::shared_ptr<spdlog::logger> ModuleRewriter::logger_

Definition at line 68 of file verilog_utils.hpp.

6.12.4.6 moduleName_

const std::string ModuleRewriter::moduleName_ [private]

Definition at line 76 of file verilog_utils.hpp.

6.12.4.7 outputPins_

const std::vector<std::string>& ModuleRewriter::outputPins_ [private]

Definition at line 74 of file verilog_utils.hpp.

6.12.4.8 portInfoMap_

std::map<std::string, std::string> ModuleRewriter::portInfoMap_ [private]

Definition at line 77 of file verilog_utils.hpp.

The documentation for this class was generated from the following files:

• include/verilog_utils.hpp
• src/verilog_utils.cpp

6.13 PinComparisonResult Struct Reference

#include <LogicComparator.hpp>

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.13 PinComparisonResult Struct Reference 113

Public Attributes

• std::string pin_name
• std::string ref_expr_raw
• std::string comp_expr_raw
• std::string ref_expr_processed
• std::string comp_expr_processed
• bool comparison_possible = false
• bool are_equivalent = false
• bool ref_compiles = false
• bool comp_compiles = false
• std::optional< Table > ref_truth_table
• std::optional< Table > comp_truth_table
• std::string error_message

6.13.1 Detailed Description

Definition at line 23 of file LogicComparator.hpp.

6.13.2 Member Data Documentation

6.13.2.1 are_equivalent

bool PinComparisonResult::are_equivalent = false

Definition at line 30 of file LogicComparator.hpp.

6.13.2.2 comp_compiles

bool PinComparisonResult::comp_compiles = false

Definition at line 32 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

114 Class Documentation

6.13.2.3 comp_expr_processed

std::string PinComparisonResult::comp_expr_processed

Definition at line 28 of file LogicComparator.hpp.

6.13.2.4 comp_expr_raw

std::string PinComparisonResult::comp_expr_raw

Definition at line 26 of file LogicComparator.hpp.

6.13.2.5 comp_truth_table

std::optional<Table> PinComparisonResult::comp_truth_table

Definition at line 34 of file LogicComparator.hpp.

6.13.2.6 comparison_possible

bool PinComparisonResult::comparison_possible = false

Definition at line 29 of file LogicComparator.hpp.

6.13.2.7 error_message

std::string PinComparisonResult::error_message

Definition at line 35 of file LogicComparator.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.13 PinComparisonResult Struct Reference 115

6.13.2.8 pin_name

std::string PinComparisonResult::pin_name

Definition at line 24 of file LogicComparator.hpp.

6.13.2.9 ref_compiles

bool PinComparisonResult::ref_compiles = false

Definition at line 31 of file LogicComparator.hpp.

6.13.2.10 ref_expr_processed

std::string PinComparisonResult::ref_expr_processed

Definition at line 27 of file LogicComparator.hpp.

6.13.2.11 ref_expr_raw

std::string PinComparisonResult::ref_expr_raw

Definition at line 25 of file LogicComparator.hpp.

6.13.2.12 ref_truth_table

std::optional<Table> PinComparisonResult::ref_truth_table

Definition at line 33 of file LogicComparator.hpp.

The documentation for this struct was generated from the following file:

• include/LogicComparator.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

116 Class Documentation

6.14 ValuesIterator Class Reference

#include <Iterators.hpp>

Public Member Functions

• ValuesIterator (si2drValuesIdT values, si2drErrorT &err)
• ∼ValuesIterator ()
• void next ()
• bool end ()

Public Attributes

• si2drValuesIdT values_
• si2drValueTypeT vtype_
• si2drInt32T int_
• si2drFloat64T float_
• si2drStringT str_
• si2drBooleanT bool_
• si2drExprT ∗ exprp_
• si2drErrorT & err_

6.14.1 Detailed Description

Definition at line 37 of file Iterators.hpp.

6.14.2 Constructor & Destructor Documentation

6.14.2.1 ValuesIterator()

ValuesIterator::ValuesIterator (

si2drValuesIdT values,

si2drErrorT & err)

Definition at line 25 of file Iterators.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.14 ValuesIterator Class Reference 117

6.14.2.2 ∼ValuesIterator()

ValuesIterator::∼ValuesIterator ()

Definition at line 29 of file Iterators.cpp.

6.14.3 Member Function Documentation

6.14.3.1 end()

bool ValuesIterator::end ()

Definition at line 34 of file Iterators.cpp.

Here is the caller graph for this function:

ValuesIterator::endgenerateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

6.14.3.2 next()

void ValuesIterator::next ()

Definition at line 31 of file Iterators.cpp.

Here is the caller graph for this function:

ValuesIterator::nextgenerateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

118 Class Documentation

6.14.4 Member Data Documentation

6.14.4.1 bool_

si2drBooleanT ValuesIterator::bool_

Definition at line 49 of file Iterators.hpp.

6.14.4.2 err_

si2drErrorT& ValuesIterator::err_

Definition at line 51 of file Iterators.hpp.

6.14.4.3 exprp_

si2drExprT∗ ValuesIterator::exprp_

Definition at line 50 of file Iterators.hpp.

6.14.4.4 float_

si2drFloat64T ValuesIterator::float_

Definition at line 47 of file Iterators.hpp.

6.14.4.5 int_

si2drInt32T ValuesIterator::int_

Definition at line 46 of file Iterators.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference 119

6.14.4.6 str_

si2drStringT ValuesIterator::str_

Definition at line 48 of file Iterators.hpp.

6.14.4.7 values_

si2drValuesIdT ValuesIterator::values_

Definition at line 44 of file Iterators.hpp.

6.14.4.8 vtype_

si2drValueTypeT ValuesIterator::vtype_

Definition at line 45 of file Iterators.hpp.

The documentation for this class was generated from the following files:

• include/Iterators.hpp
• src/Iterators.cpp

6.15 VerilogVisitor Class Reference

#include <verilog_utils.hpp>

Inheritance diagram for VerilogVisitor:

VerilogVisitor

slang::syntax::SyntaxVisitor
< VerilogVisitor >

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

120 Class Documentation

Collaboration diagram for VerilogVisitor:

VerilogVisitor

slang::syntax::SyntaxVisitor
< VerilogVisitor >

Public Member Functions

• VerilogVisitor (const std::string &targetCell)
• void handle (const slang::syntax::SyntaxNode &node)
• void handle (const slang::syntax::ModuleDeclarationSyntax &module)
• void handle (const slang::syntax::PortDeclarationSyntax &portDecl)
• void handle (const slang::syntax::HierarchyInstantiationSyntax &hierarchyInst)
• void handle (const slang::syntax::SpecifyBlockSyntax &specifyBlock)

Private Attributes

• const std::string & targetCell_
• int depth_
• bool inTargetModule_

6.15.1 Detailed Description

Definition at line 15 of file verilog_utils.hpp.

6.15.2 Constructor & Destructor Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference 121

6.15.2.1 VerilogVisitor()

VerilogVisitor::VerilogVisitor (

const std::string & targetCell) [inline], [explicit]

Definition at line 17 of file verilog_utils.hpp.

6.15.3 Member Function Documentation

6.15.3.1 handle() [1/5]

void VerilogVisitor::handle (

const slang::syntax::HierarchyInstantiationSyntax & hierarchyInst)

Definition at line 78 of file verilog_utils.cpp.

6.15.3.2 handle() [2/5]

void VerilogVisitor::handle (

const slang::syntax::ModuleDeclarationSyntax & module)

Definition at line 17 of file verilog_utils.cpp.

6.15.3.3 handle() [3/5]

void VerilogVisitor::handle (

const slang::syntax::PortDeclarationSyntax & portDecl)

Definition at line 46 of file verilog_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

122 Class Documentation

6.15.3.4 handle() [4/5]

void VerilogVisitor::handle (

const slang::syntax::SpecifyBlockSyntax & specifyBlock)

Definition at line 258 of file verilog_utils.cpp.

Here is the call graph for this function:

VerilogVisitor::handle VerilogVisitor::handle

6.15.3.5 handle() [5/5]

void VerilogVisitor::handle (

const slang::syntax::SyntaxNode & node)

Definition at line 6 of file verilog_utils.cpp.

Here is the caller graph for this function:

VerilogVisitor::handleVerilogVisitor::handle

6.15.4 Member Data Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

6.15 VerilogVisitor Class Reference 123

6.15.4.1 depth_

int VerilogVisitor::depth_ [private]

Definition at line 28 of file verilog_utils.hpp.

6.15.4.2 inTargetModule_

bool VerilogVisitor::inTargetModule_ [private]

Definition at line 29 of file verilog_utils.hpp.

6.15.4.3 targetCell_

const std::string& VerilogVisitor::targetCell_ [private]

Definition at line 27 of file verilog_utils.hpp.

The documentation for this class was generated from the following files:

• include/verilog_utils.hpp
• src/verilog_utils.cpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

124 Class Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

Chapter 7

File Documentation

7.1 doc/ChangeLog.md File Reference

7.2 include/Iterators.hpp File Reference

#include "si2dr_liberty.h"

#include "LibAttribute.hpp"

#include "LibGroup.hpp"

Include dependency graph for Iterators.hpp:

include/Iterators.hpp

si2dr_liberty.h

LibAttribute.hppLibGroup.hpp

string

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

126 File Documentation

This graph shows which files directly or indirectly include this file:

include/Iterators.hpp

include/LibFile.hpp

include/json_utils.hpp src/Iterators.cpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

src/json_utils.cpp

Classes

• class GroupsIterator
• class AttributesIterator
• class ValuesIterator

7.3 Iterators.hpp

Go to the documentation of this file.
00001 #ifndef ITERATORS_H

00002 #define ITERATORS_H

00003

00004 #include "si2dr_liberty.h"

00005

00006 #include "LibAttribute.hpp"

00007 #include "LibGroup.hpp"

00008

00009 class GroupsIterator {

00010 public:

00011 GroupsIterator(si2drGroupsIdT groups, si2drErrorT &err);

00012 ~GroupsIterator();

00013 void next();

00014 bool end();

00015 LibGroup get();

00016

00017 private:

00018 si2drGroupsIdT groups_;

00019 si2drGroupIdT group_;

00020 si2drErrorT &err_;

00021 };

00022

00023 class AttributesIterator {

00024 public:

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json_utils.hpp File Reference 127

00025 AttributesIterator(si2drAttrsIdT attrs, si2drErrorT &err);

00026 ~AttributesIterator();

00027 void next();

00028 bool end();

00029 LibAttribute get();

00030

00031 private:

00032 si2drAttrsIdT attrs_;

00033 si2drAttrIdT attr_;

00034 si2drErrorT &err_;

00035 };

00036

00037 class ValuesIterator {

00038 public:

00039 ValuesIterator(si2drValuesIdT values, si2drErrorT &err);

00040 ~ValuesIterator();

00041 void next();

00042 bool end();

00043

00044 si2drValuesIdT values_;

00045 si2drValueTypeT vtype_;

00046 si2drInt32T int_;

00047 si2drFloat64T float_;

00048 si2drStringT str_;

00049 si2drBooleanT bool_;

00050 si2drExprT *exprp_;

00051 si2drErrorT &err_;

00052 };

00053

00054 #endif // ITERATORS_H

7.4 include/json_utils.hpp File Reference

#include <string>

#include "nlohmann/json.hpp"

#include "si2dr_liberty.h"

#include "spdlog/spdlog.h"

#include "Iterators.hpp"

#include "LibGroup.hpp"

Include dependency graph for json_utils.hpp:

include/json_utils.hpp

string

nlohmann/json.hpp

si2dr_liberty.h

spdlog/spdlog.hIterators.hpp

LibGroup.hpp LibAttribute.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

128 File Documentation

This graph shows which files directly or indirectly include this file:

include/json_utils.hpp

include/LibFile.hpp src/json_utils.cpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

Typedefs

• using json = nlohmann::json

Functions

• json generateLutJson (LibGroup &lib_lut_group, si2drErrorT &err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

• json generatePowerJson (LibGroup &lib_power_group, si2drErrorT &err)
Converts a Liberty power group into a JSON representation.

• std::pair< std::string, json > generatePinJson (LibGroup &lib_pin_group, si2drErrorT &err)
Generates a JSON representation of a Liberty pin group.

• json generateCellJson (LibGroup &lib_cell_group, si2drErrorT &err)
Generates a JSON representation of a cell from a LibGroup object.

7.4.1 Typedef Documentation

7.4.1.1 json

using json = nlohmann::json

Definition at line 13 of file json_utils.hpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json_utils.hpp File Reference 129

7.4.2 Function Documentation

7.4.2.1 generateCellJson()

json generateCellJson (

LibGroup & lib_cell_group,

si2drErrorT & err)

Generates a JSON representation of a cell from a LibGroup object.

This function processes a LibGroup representing a cell and converts it into a JSON object. It extracts
the cell name and processes specific attributes such as area, cell_leakage_power, and cell_footprint. It
also processes pins within the cell by categorizing them based on their direction (input, output, internal,
inout).

Parameters

lib_cell_group The LibGroup object representing the cell
err Reference to a si2drErrorT object for error handling

Returns

json A JSON object containing the cell's information with the following structure:

• ”cell_name”: string - name of the cell

• ”area”: float (optional) - cell area if present

• ”cell_leakage_power”: float (optional) - cell leakage power if present

• ”cell_footprint”: string (optional) - cell footprint if present

• ”input_pins”: array - list of input pins

• ”output_pins”: array - list of output pins

• ”internal_pins”: array - list of internal pins

• ”inout_pins”: array - list of inout pins

Definition at line 271 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

130 File Documentation

Here is the call graph for this function:

generateCellJson

GroupsIterator::end

AttributesIterator::end

generatePinJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json_utils.hpp File Reference 131

7.4.2.2 generateLutJson()

json generateLutJson (

LibGroup & lib_lut_group,

si2drErrorT & err)

Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

This function iterates through the attributes of the provided LibGroup object representing a LUT and
converts them into a JSON structure. It specifically handles the following attributes:

• ”index_1”: Converted to a vector and stored in the JSON

• ”index_2”: Converted to a vector and stored in the JSON

• ”values”: Each value is parsed into a vector and added to an array in the JSON

Any other attributes encountered will trigger a warning message.

Parameters

lib_lut_group The LibGroup object containing the LUT data to be converted
err Reference to an si2drErrorT object to track any errors during processing

Returns

json A JSON object representing the LUT data with keys for ”index_1”, ”index_2”, and ”values”

Definition at line 60 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

132 File Documentation

Here is the call graph for this function:

generateLutJson

AttributesIterator::end

ValuesIterator::end

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

LibAttribute::getValues

AttributesIterator
::next

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.4.2.3 generatePinJson()

std::pair< std::string, json > generatePinJson (

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json_utils.hpp File Reference 133

LibGroup & lib_pin_group,

si2drErrorT & err)

Generates a JSON representation of a Liberty pin group.

This function traverses a Liberty pin group, extracts relevant attributes and sub-groups, and converts
them into a JSON object. It also determines the pin's direction.

Processes the following pin attributes:

• direction

• max_transition, capacitance, rise_capacitance, fall_capacitance, max_capacitance (float types)

• function, power_down_function, related_ground_pin, related_power_pin, three_state (string
types)

• clock (boolean type)

Handles the following sub-groups:

• internal_power: Converted using generatePowerJson()

• timing: Converted using generateTimingJson()

Parameters

lib_pin_group The Liberty pin group to process
err Reference to an error object for tracking Liberty API errors

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

134 File Documentation

Returns

A pair containing the pin direction (string) and the JSON representation of the pin

Definition at line 205 of file json_utils.cpp.

Here is the call graph for this function:

generatePinJson

GroupsIterator::end

AttributesIterator::end

generatePowerJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

generateTimingJson

LibAttribute::getBoolean

LibAttribute::getFloat

LibGroup::getName

generateLutJson ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.4 include/json_utils.hpp File Reference 135

Here is the caller graph for this function:

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.4.2.4 generatePowerJson()

json generatePowerJson (

LibGroup & lib_power_group,

si2drErrorT & err)

Converts a Liberty power group into a JSON representation.

This function processes a Liberty power group and converts its attributes and subgroups into a JSON
object. It handles attributes like ”when”, ”related_pin”, and ”related_pg_pin”, as well as ”rise_power”
and ”fall_power” subgroups.

Parameters

lib_power_group The Liberty power group to convert
err Reference to an si2drErrorT object for error handling

Returns

json A JSON object representing the power group data

The function:

• Extracts string attributes (when, related_pin, related_pg_pin)

• Processes rise_power and fall_power subgroups by converting them to LUT JSON format

• Logs warnings for unknown power subgroup types

Definition at line 152 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

136 File Documentation

Here is the call graph for this function:

generatePowerJson

GroupsIterator::end

AttributesIterator::end

generateLutJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generatePowerJsongeneratePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.5 json_utils.hpp

Go to the documentation of this file.
00001 #ifndef JSON_UTILS_HPP

00002 #define JSON_UTILS_HPP

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.6 include/LibAttribute.hpp File Reference 137

00003

00004 #include <string>

00005

00006 #include "nlohmann/json.hpp"

00007 #include "si2dr_liberty.h"

00008 #include "spdlog/spdlog.h"

00009

00010 #include "Iterators.hpp"

00011 #include "LibGroup.hpp"

00012

00013 using json = nlohmann::json;

00014

00015 json generateLutJson(LibGroup &lib_lut_group, si2drErrorT &err);

00016 json generatePowerJson(LibGroup &lib_power_group, si2drErrorT &err);

00017 std::pair<std::string, json> generatePinJson(LibGroup &lib_pin_group, si2drErrorT &err);

00018 json generateCellJson(LibGroup &lib_cell_group, si2drErrorT &err);

00019

00020 #endif // JSON_UTILS_HPP

7.6 include/LibAttribute.hpp File Reference

#include <string>

#include "si2dr_liberty.h"

Include dependency graph for LibAttribute.hpp:

include/LibAttribute.hpp

string si2dr_liberty.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

138 File Documentation

This graph shows which files directly or indirectly include this file:

include/LibAttribute.hpp

include/Iterators.hpp src/LibAtrribute.cpp

include/LibFile.hpp

include/json_utils.hpp src/Iterators.cpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

src/json_utils.cpp

Classes

• class LibAttribute

7.7 LibAttribute.hpp

Go to the documentation of this file.
00001 #ifndef LIB_ATTRIBUTE_H

00002 #define LIB_ATTRIBUTE_H

00003

00004 #include <string>

00005

00006 #include "si2dr_liberty.h"

00007

00008 class LibAttribute {

00009 public:

00010 LibAttribute(si2drAttrIdT attr, si2drErrorT &err);

00011 ~LibAttribute();

00012 std::string getName();

00013 bool isComplex();

00014 si2drValuesIdT getValues();

00015 long int getInt();

00016 double getFloat();

00017 std::string getString();

00018 bool getBoolean();

00019

00020 private:

00021 si2drAttrIdT attr_;

00022 si2drErrorT &err_;

00023 };

00024

00025 #endif // LIB_ATTRIBUTE_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.8 include/LibFile.hpp File Reference 139

7.8 include/LibFile.hpp File Reference

#include <chrono>

#include <filesystem>

#include <fstream>

#include <string>

#include <unordered_set>

#include "nlohmann/json.hpp"

#include "si2dr_liberty.h"

#include "spdlog/sinks/basic_file_sink.h"

#include "spdlog/sinks/stdout_color_sinks.h"

#include "spdlog/spdlog.h"

#include "Iterators.hpp"

#include "json_utils.hpp"

#include "verilog_utils.hpp"

#include "version.h"

Include dependency graph for LibFile.hpp:

include/LibFile.hpp

chrono filesystem

fstream

string

unordered_set nlohmann/json.hpp

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

spdlog/spdlog.h Iterators.hpp

json_utils.hppverilog_utils.hpp version.h

LibAttribute.hppLibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.hslang/syntax/SyntaxVisitor.h

This graph shows which files directly or indirectly include this file:

include/LibFile.hpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

Classes

• class LibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

140 File Documentation

Typedefs

• using json = nlohmann::json

7.8.1 Typedef Documentation

7.8.1.1 json

using json = nlohmann::json

Definition at line 21 of file LibFile.hpp.

7.9 LibFile.hpp

Go to the documentation of this file.
00001 #ifndef LIB_FILE_H

00002 #define LIB_FILE_H

00003

00004 #include <chrono>

00005 #include <filesystem>

00006 #include <fstream>

00007 #include <string>

00008 #include <unordered_set>

00009

00010 #include "nlohmann/json.hpp"

00011 #include "si2dr_liberty.h"

00012 #include "spdlog/sinks/basic_file_sink.h"

00013 #include "spdlog/sinks/stdout_color_sinks.h"

00014 #include "spdlog/spdlog.h"

00015

00016 #include "Iterators.hpp"

00017 #include "json_utils.hpp"

00018 #include "verilog_utils.hpp"

00019 #include "version.h"

00020

00021 using json = nlohmann::json;

00022

00023 class LibFile {

00024 public:

00025 LibFile(const std::string &filepath, const std::string &loggername);

00026 ~LibFile();

00027 std::shared_ptr<spdlog::logger> logger_;

00028 std::filesystem::path filepath_; // full path to the file

00029 std::string basename_; // file name without extension

00030 std::string filename_; // full file name with extension

00031 std::string libname_ = ""; // library name obtained through parsing

00032 std::string jsonname_ = ""; // json file name to store parsed data

00033 std::string loggername_ = ""; // log file name

00034 json lib_json_ = json::object();

00035 void writeJsonToFile();

00036 void parse();

00037 void modify();

00038 void mono(const bool is_slew);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 141

00039 void supercell(const int chain_length, const std::vector<std::string> &cell_names);

00040 void verilog(const int chain_length, const std::vector<std::string> &cell_names);

00041 void spice(const int chain_length, const std::vector<std::string> &cell_names,

00042 const std::string &verilog_lib_file, const std::string &spice_lib_file);

00043 std::map<std::string, std::string> logic(const std::string &cell_name);

00044

00045 private:

00046 si2drErrorT err_;

00047 int process_ = 0;

00048 float voltage_ = 0.0;

00049 int temperature_ = 0;

00050 void read();

00051 bool checkTimingArcMonotonicity(const json &cell, const json &pin, const json &arc,

00052 const std::string &type, bool is_slew);

00053 // --- Private Helper Methods ---

00054

00055 // Helper function to split a string by whitespace

00056 std::vector<std::string> splitString(const std::string &s);

00057

00058 // Function to generate RC lines based on instance index and stage

00059 void generateRCLines(std::ofstream &outFile, const std::string &netName, int instanceIndex,

00060 bool isFinalStage);

00061

00062 // Function to modify the SPICE netlist generated by v2lvs

00063 bool modifySpiceNetlist(const std::string &v2lvsSpiceFile, // Input is the v2lvs output

00064 const std::string &finalSpiceFile, // Output is the final file

00065 const std::string &targetGlobalLine);

00066 };

00067

00068 #endif // LIB_FILE_H

7.10 include/LibFileOperations.hpp File Reference

#include <filesystem>

#include <iostream>

#include <thread>

#include "si2dr_liberty.h"

#include "spdlog/sinks/basic_file_sink.h"

#include "spdlog/sinks/stdout_color_sinks.h"

#include "spdlog/spdlog.h"

#include "LibFile.hpp"

#include "LibraryComparator.hpp"

#include "LogicComparator.hpp"

#include "LogicExtractor.hpp"

Include dependency graph for LibFileOperations.hpp:

include/LibFileOperations.hpp

filesystem

iostream thread

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

spdlog/spdlog.h

LibFile.hpp

LibraryComparator.hpp

LogicComparator.hppLogicExtractor.hpp

chrono

fstream

string

unordered_set nlohmann/json.hppIterators.hpp

json_utils.hppverilog_utils.hpp version.h

LibAttribute.hpp LibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.hslang/syntax/SyntaxVisitor.h

tabulate/table.hpp tabulate/markdown_exporter.hpp algorithmcmath iomanip optional regex variant exprtk.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

142 File Documentation

This graph shows which files directly or indirectly include this file:

include/LibFileOperations.hpp

src/LibFileOperations.cpp src/main.cpp

Functions

• void printInfo ()
Sets up and configures the global logger and prints application information.

• void parseLibFile (const std::string &library_path, const std::string log_file_name)
Parses a library file and generates corresponding output.

• void monoCheckLibFile (const std::string &library_path, const std::string log_file_name, bool is←↩

_slew)
Performs monotonicity check on a library file.

• void supercellLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names)
Creates supercell map structures from a Liberty library file.

• void verilogLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names)
Generates Verilog files from a library file for specified cells.

• void spiceLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names, const std::string &verilog_lib_file, const
std::string &spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

• void compareLibFiles (const std::string &ref_lib, const std::string &comp_lib, const double reltol,
const double abstol, std::string &report_file_name)

Compares two library files and generates a detailed comparison report.

• void funcLibFile (const std::string &ref_file, const std::string &comp_file, const std::vector< std←↩

::string > &cell_names, std::string &report_file_name)
Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

7.10.1 Function Documentation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 143

7.10.1.1 compareLibFiles()

void compareLibFiles (

const std::string & ref_lib,

const std::string & comp_lib,

const double reltol,

const double abstol,

std::string & report_file_name)

Compares two library files and generates a detailed comparison report.

This function compares a reference library file with another library file, performing validation checks
based on specified tolerance parameters. The comparison results are written to a report file in markdown
or text format.

Parameters

ref_lib Path to the reference library file to use as the baseline
comp_lib Path to the library file to compare against the reference
reltol Relative tolerance for numerical comparisons (must be >= 0.0)
abstol Absolute tolerance for numerical comparisons
report_file_name [in,out] Name of the file to write the comparison report to. If empty, defaults to

[comp_lib_basename].cmp.md. If provided but doesn't end with .txt or .md,
.md will be appended.

Note

The function will log an error and return without comparing if reltol is invalid.

Log files will be created with the naming pattern [library_basename].cmp.log

The function uses the LibraryComparator class to perform the actual comparison.

Definition at line 249 of file LibFileOperations.cpp.

Here is the call graph for this function:

compareLibFiles LibraryComparator::
generateReport

LibraryComparator::
compareCell

LibraryComparator::
comparePin

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

144 File Documentation

Here is the caller graph for this function:

compareLibFilesmain

7.10.1.2 funcLibFile()

void funcLibFile (

const std::string & ref_file,

const std::string & comp_file,

const std::vector< std::string > & cell_names,

std::string & report_file_name)

Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

This function compares the logic functions of specified cells in two files, which can be either in Liberty
(.lib) or Verilog (.v) format. It extracts the logic functions for each cell from both files, compares them,
and generates a report summarizing the comparison results.

Parameters

ref_file The path to the reference file (Liberty or Verilog).
comp_file The path to the comparison file (Liberty or Verilog).
cell_names A vector of cell names to be checked for functional equivalence.
report_file_name A string to store the name of the report file. If empty, a default name is

generated. If the provided name does not end with ”.txt” or ”.md”, ”.md” is
appended.

The function first checks the file extensions to determine the file format. It then extracts the logic
functions for each specified cell from both files. The logic functions are then compared, and a report
is generated, which includes the comparison results for each cell. The report is written to the specified
report file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 145

Note

• If no cell names are provided, the function logs an error and returns.

• If the reference or comparison file format is not supported (i.e., not .lib or .v), the function
logs an error and returns.

• The report file is cleared before writing the comparison results.

• The function uses spdlog for logging information, warnings, and errors.

• The function utilizes the LogicComparator class to perform the logic comparison and generate
the report.

• Memory allocated for LibFile objects is managed using raw pointers and must be manually
deallocated to prevent memory leaks.

Definition at line 308 of file LibFileOperations.cpp.

Here is the call graph for this function:

funcLibFile

LogicComparator::compare
CellLogic

extractLogicFromVerilog

LogicComparator::generate
Report

LogicComparator::logic

LibFile::logic

LogicComparator::compare
SingleExpressionPair

LogicComparator::extract
Variables

LogicComparator::preprocess
Expression

isIdentifier

isOperator

LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

146 File Documentation

Here is the caller graph for this function:

funcLibFilemain

7.10.1.3 monoCheckLibFile()

void monoCheckLibFile (

const std::string & library_path,

const std::string log_file_name,

bool is_slew)

Performs monotonicity check on a library file.

This function validates the monotonicity of timing data in a library file. It creates a log file to record the
results of the check and handles any exceptions that occur during the process.

Parameters

library_path Path to the library file to check
log_file_name Name of the log file to create (optional). If empty, a default name will be

generated from the library file name
is_slew Flag indicating whether to check input slew monotonicity (true) or output load

monotonicity (false)

Exceptions

The function catches and logs any exceptions but does not rethrow them

Definition at line 81 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 147

Here is the call graph for this function:

monoCheckLibFile LibFile::mono

LibFile::checkTimingArcMonotonicity

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

monoCheckLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

148 File Documentation

7.10.1.4 parseLibFile()

void parseLibFile (

const std::string & library_path,

const std::string log_file_name)

Parses a library file and generates corresponding output.

This function processes the given library file, parsing its contents and generating a JSON output. It also
logs the parsing process to a specified log file or creates a default log file if none is provided.

Parameters

library_path Path to the library file that needs to be parsed
log_file_name Optional name for the log file. If empty, a default name is generated based on the

library filename with ”.parse.log” extension

Exceptions

The function catches and logs any exceptions but doesn't propagate them

Definition at line 49 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 149

Here is the call graph for this function:

parseLibFile

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

parseLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

150 File Documentation

7.10.1.5 printInfo()

void printInfo ()

Sets up and configures the global logger and prints application information.

This function performs the following operations:

1. Creates a console sink for logging with level set to INFO

2. Creates a file sink for logging with level set to TRACE, saving to [APP_NAME].log

3. Configures a logger with both sinks and sets it as the default logger

4. Outputs basic application information:

• Version and build timestamp

• Author information

• Log file location

Note

Uses spdlog library for logging functionality

Depends on APP_NAME, APP_VERSION, BUILD_TIMESTAMP, APP_AUTHOR, and APP←↩

_CONTACT macros

Definition at line 18 of file LibFileOperations.cpp.

Here is the caller graph for this function:

printInfomain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 151

7.10.1.6 spiceLibFile()

void spiceLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names,

const std::string & verilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

This function takes a library file path, a log file name, a chain length, a vector of cell names, a Verilog
library file path, and a SPICE library file path as input. It initializes a LibFile object, validates the chain
length, and then calls the spice method of the LibFile object to generate the SPICE library file. It logs
the start and end of the SPICE generation process, as well as any errors that occur.

Parameters

library_path The path to the input library file.
log_file_name The name of the log file. If empty, a default log file name is generated based on

the library file name.
chain_length The chain length to use during SPICE generation. Must be >= 1.
cell_names A vector of cell names to include in the SPICE generation.
verilog_lib_file The path to the Verilog library file.
spice_lib_file The path to the output SPICE library file.

Definition at line 202 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

152 File Documentation

Here is the call graph for this function:

spiceLibFile LibFile::spice

LibFile::modifySpiceNetlist

LibFile::verilog

LibFile::generateRCLines

LibFile::splitString

LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

spiceLibFilemain

7.10.1.7 supercellLibFile()

void supercellLibFile (

const std::string & library_path,

const std::string & log_file_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 153

int chain_length,

const std::vector< std::string > & cell_names)

Creates supercell map structures from a Liberty library file.

This function reads a Liberty file, creates supercell structures based on the specified chain length and
cell names, and logs the process to a file.

Parameters

library_path Path to the Liberty file to process
log_file_name Name of the log file (if empty, defaults to ”[library_name].supercell.log”)
chain_length The length of chains to create (must be >= 1)
cell_names Vector of cell names to process for supercell generation

Exceptions

May pass through exceptions from the LibFile::supercell method

Note

The function validates the chain length and logs all activities including errors that might occur
during processing

Definition at line 116 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

154 File Documentation

Here is the call graph for this function:

supercellLibFile LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

supercellLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.10 include/LibFileOperations.hpp File Reference 155

7.10.1.8 verilogLibFile()

void verilogLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names)

Generates Verilog files from a library file for specified cells.

This function processes a library file and generates Verilog representation for the specified cell names
with a given chain length. The operation results are logged to a specified or default log file.

Parameters

library_path Path to the library file to process
log_file_name Name for the log file (if empty, a default name will be generated)
chain_length Number of cells to chain together, must be >= 1
cell_names Vector of cell names to generate Verilog for

Exceptions

Catches any exceptions from the verilog generation process and logs them

Definition at line 157 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

156 File Documentation

Here is the call graph for this function:

verilogLibFile LibFile::verilog LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

verilogLibFilemain

7.11 LibFileOperations.hpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.12 include/LibGroup.hpp File Reference 157

00001 #ifndef LIBFILEOPERATIONS_H

00002 #define LIBFILEOPERATIONS_H

00003

00004 #include <filesystem>

00005 #include <iostream>

00006 #include <thread>

00007

00008 #include "si2dr_liberty.h"

00009 #include "spdlog/sinks/basic_file_sink.h"

00010 #include "spdlog/sinks/stdout_color_sinks.h"

00011 #include "spdlog/spdlog.h"

00012

00013 #include "LibFile.hpp"

00014 #include "LibraryComparator.hpp"

00015 #include "LogicComparator.hpp"

00016 #include "LogicExtractor.hpp"

00017

00018 void printInfo();

00019 void parseLibFile(const std::string &library_path, const std::string log_file_name);

00020 void monoCheckLibFile(const std::string &library_path, const std::string log_file_name,

00021 bool is_slew);

00022 void supercellLibFile(const std::string &library_path, const std::string &log_file_name,

00023 int chain_length, const std::vector<std::string> &cell_names);

00024 void verilogLibFile(const std::string &library_path, const std::string &log_file_name,

00025 int chain_length, const std::vector<std::string> &cell_names);

00026 void spiceLibFile(const std::string &library_path, const std::string &log_file_name,

00027 int chain_length, const std::vector<std::string> &cell_names,

00028 const std::string &verilog_lib_file, const std::string &spice_lib_file);

00029 void compareLibFiles(const std::string &ref_lib, const std::string &comp_lib, const double reltol,

00030 const double abstol, std::string &report_file_name);

00031 void funcLibFile(const std::string &ref_file, const std::string &comp_file,

00032 const std::vector<std::string> &cell_names, std::string &report_file_name);

00033

00034 #endif // LIBFILEOPERATIONS_H

7.12 include/LibGroup.hpp File Reference

#include <string>

#include "si2dr_liberty.h"

Include dependency graph for LibGroup.hpp:

include/LibGroup.hpp

string si2dr_liberty.h

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

158 File Documentation

This graph shows which files directly or indirectly include this file:

include/LibGroup.hpp

include/Iterators.hpp

include/json_utils.hpp

src/LibGroup.cpp

include/LibFile.hpp

src/Iterators.cpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

src/json_utils.cpp

Classes

• class LibGroup

7.13 LibGroup.hpp

Go to the documentation of this file.
00001 #ifndef LIB_GROUP_H

00002 #define LIB_GROUP_H

00003

00004 #include <string>

00005

00006 #include "si2dr_liberty.h"

00007

00008 class LibGroup {

00009 public:

00010 LibGroup(si2drGroupIdT group, si2drErrorT &err);

00011 ~LibGroup();

00012 std::string getName();

00013 std::string getType();

00014 si2drAttrsIdT getAttrs();

00015 si2drGroupsIdT getGroups();

00016

00017 private:

00018 si2drGroupIdT group_;

00019 si2drErrorT &err_;

00020 };

00021

00022 #endif // LIB_GROUP_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.14 include/LibraryComparator.hpp File Reference 159

7.14 include/LibraryComparator.hpp File Reference

#include <chrono>

#include <filesystem>

#include <fstream>

#include "nlohmann/json.hpp"

#include "spdlog/spdlog.h"

#include "tabulate/table.hpp"

#include <tabulate/markdown_exporter.hpp>

#include "LibFile.hpp"

#include "version.h"

Include dependency graph for LibraryComparator.hpp:

include/LibraryComparator.hpp

chrono filesystem

fstream nlohmann/json.hppspdlog/spdlog.h

tabulate/table.hpp tabulate/markdown_exporter.hppLibFile.hpp

version.h

string

unordered_set

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

Iterators.hpp

json_utils.hppverilog_utils.hpp

LibAttribute.hppLibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h

This graph shows which files directly or indirectly include this file:

include/LibraryComparator.hpp

include/LibFileOperations.hpp src/LibraryComparator.cpp

src/LibFileOperations.cpp src/main.cpp

Classes

• class LibraryComparator

Typedefs

• using json = nlohmann::json

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

160 File Documentation

7.14.1 Typedef Documentation

7.14.1.1 json

using json = nlohmann::json

Definition at line 16 of file LibraryComparator.hpp.

7.15 LibraryComparator.hpp

Go to the documentation of this file.
00001 #ifndef COMPARE_HPP

00002 #define COMPARE_HPP

00003

00004 #include <chrono>

00005 #include <filesystem>

00006 #include <fstream>

00007

00008 #include "nlohmann/json.hpp"

00009 #include "spdlog/spdlog.h"

00010 #include "tabulate/table.hpp"

00011 #include <tabulate/markdown_exporter.hpp>

00012

00013 #include "LibFile.hpp"

00014 #include "version.h"

00015

00016 using json = nlohmann::json;

00017 using namespace tabulate;

00018

00019 class LibraryComparator {

00020 public:

00021 LibraryComparator(LibFile &ref_libfile, LibFile &comp_libfile, double reltol, double abstol);

00022 std::filesystem::path ref_lib_path_;

00023 std::filesystem::path comp_lib_path_;

00024 void generateReport(const std::string &output_file);

00025

00026 private:

00027 json ref_json_;

00028 json comp_json_;

00029 double reltol_;

00030 double abstol_;

00031

00032 void compareCell(const std::string &cell_name, const json &ref_cell, const json &comp_cell,

00033 Table &table);

00034 void comparePin(const std::string &cell_name, const std::string &pin_name, const json &ref_pin,

00035 const json &comp_pin, Table &table);

00036 void compareTimingArc(const std::string &cell_name, const std::string &pin_name,

00037 const std::string &timing_type, const json &ref_timing_arc,

00038 const json &comp_timing_arc, Table &table);

00039 void compareLut(const std::string &cell_name, const std::string &pin_name,

00040 const std::string &timing_type, const std::string &related_pin,

00041 const std::string &arc_name, const json &ref_lut, const json &comp_lut,

00042 Table &table);

00043 // void configureTableFormat(Table &table);

00044 };

00045

00046 #endif // COMPARE_HPP

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.16 include/LogicComparator.hpp File Reference 161

7.16 include/LogicComparator.hpp File Reference

#include <algorithm>

#include <chrono>

#include <cmath>

#include <filesystem>

#include <iomanip>

#include <optional>

#include <regex>

#include <variant>

#include "exprtk.hpp"

#include "tabulate/markdown_exporter.hpp"

#include "tabulate/table.hpp"

#include <spdlog/spdlog.h>

#include "version.h"

Include dependency graph for LogicComparator.hpp:

include/LogicComparator.hpp

algorithm chrono cmath filesystem iomanip optional regex variant exprtk.hpp tabulate/markdown_exporter.hpp tabulate/table.hpp spdlog/spdlog.h version.h

This graph shows which files directly or indirectly include this file:

include/LogicComparator.hpp

include/LibFileOperations.hpp src/LogicComparator.cpp

src/LibFileOperations.cpp src/main.cpp

Classes

• struct PinComparisonResult
• class LogicComparator

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

162 File Documentation

7.17 LogicComparator.hpp

Go to the documentation of this file.
00001 #ifndef LOGIC_COMPARATOR_HPP

00002 #define LOGIC_COMPARATOR_HPP

00003

00004 #include <algorithm>

00005 #include <chrono>

00006 #include <cmath>

00007 #include <filesystem>

00008 #include <iomanip>

00009 #include <optional> // To store tables optionally

00010 #include <regex> // For regular expressions

00011 #include <variant>

00012

00013 #include "exprtk.hpp"

00014 #include "tabulate/markdown_exporter.hpp"

00015 #include "tabulate/table.hpp"

00016 #include <spdlog/spdlog.h>

00017

00018 #include "version.h"

00019

00020 using namespace tabulate;

00021

00022 // Structure to hold results for a single pin comparison

00023 struct PinComparisonResult {

00024 std::string pin_name;

00025 std::string ref_expr_raw;

00026 std::string comp_expr_raw;

00027 std::string ref_expr_processed;

00028 std::string comp_expr_processed;

00029 bool comparison_possible = false; // Was comparison attempted?

00030 bool are_equivalent = false;

00031 bool ref_compiles = false;

00032 bool comp_compiles = false;

00033 std::optional<Table> ref_truth_table; // Store tables only if needed/successful

00034 std::optional<Table> comp_truth_table;

00035 std::string error_message; // Store any error during comparison

00036 };

00037

00038 class LogicComparator {

00039 public:

00040 LogicComparator(const std::map<std::string, std::string> &ref_outpin_map,

00041 const std::map<std::string, std::string> &comp_outpin_map,

00042 const std::string &cell_name);

00043

00044 // Example code from exprtk documentation

00045 void logic();

00046

00047 // Preprocessing function

00048 std::string preprocessExpression(const std::string &input_expr);

00049

00050 // Helper to extract unique sorted variables from TWO expressions

00051 bool extractVariables(const std::string &expr1, const std::string &expr2,

00052 std::vector<std::string> &sorted_vars);

00053

00064 void compareSingleExpressionPair(const std::string &ref_expression_processed,

00065 const std::string &comp_expression_processed,

00066 const std::vector<std::string> &sorted_vars,

00067 PinComparisonResult &result); // Pass result struct

00068

00073 void compareCellLogic();

00074

00080 void generateReport(const std::string &output_file);

00081

00082 private:

00083 std::map<std::string, std::string> ref_outpin_map_;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.18 include/LogicExtractor.hpp File Reference 163

00084 std::map<std::string, std::string> comp_outpin_map_;

00085 std::string cell_name_;

00086 std::map<std::string, PinComparisonResult> all_pin_results_;

00087 };

00088

00089 #endif // LOGIC_COMPARATOR_HPP

7.18 include/LogicExtractor.hpp File Reference

#include "verilog_utils.hpp"

Include dependency graph for LogicExtractor.hpp:

include/LogicExtractor.hpp

verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

This graph shows which files directly or indirectly include this file:

include/LogicExtractor.hpp

include/LibFileOperations.hpp src/LogicExtractor.cpp

src/LibFileOperations.cpp src/main.cpp

Classes

• struct GateInfo
• class LogicExtractor

Functions

• void extractAndPrintNetlistInfo (const std::string &verilog_file, const std::string &cell)
Extracts and prints netlist information from a Verilog file for a specified cell.

• std::map< std::string, std::string > extractLogicFromVerilog (const std::string &verilog_file, const
std::string &cell)

Extracts logic expressions from a Verilog file for a specified cell.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

164 File Documentation

7.18.1 Function Documentation

7.18.1.1 extractAndPrintNetlistInfo()

void extractAndPrintNetlistInfo (

const std::string & verilog_file,

const std::string & cell)

Extracts and prints netlist information from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, extracts information about the primary inputs,
primary outputs, internal wires, and gate drivers within a specified cell (module). It then prints a summary
of the extracted information to the console using spdlog.

Parameters

verilog_file The path to the Verilog file to be parsed.
cell The name of the cell (module) for which to extract netlist information.

Exceptions

std::exception If any error occurs during Verilog parsing or info extraction.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.18 include/LogicExtractor.hpp File Reference 165

Note

The function uses the slang library for Verilog parsing and a custom LogicExtractor class to extract
the desired information. Error messages are logged using spdlog.

Definition at line 676 of file LogicExtractor.cpp.

Here is the call graph for this function:

extractAndPrintNetlistInfo

LogicExtractor::getExtracted
Gates

LogicExtractor::getInternal
Wires

LogicExtractor::getPrimary
Inputs

LogicExtractor::getPrimary
Outputs

7.18.1.2 extractLogicFromVerilog()

std::map< std::string, std::string > extractLogicFromVerilog (

const std::string & verilog_file,

const std::string & cell)

Extracts logic expressions from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, identifies the specified cell, and extracts the
logic expressions for its outputs. It returns a map where the keys are output signal names and the values
are their corresponding logic expressions as strings.

Parameters

verilog_file The path to the Verilog file to parse.
cell The name of the cell (module) for which to extract logic expressions.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

166 File Documentation

Returns

A map of output signal names to their logic expressions. Returns an empty map if parsing fails,
the cell is not found, or no logic expressions can be derived.

Note

The function uses the slang library for Verilog parsing. Ensure that slang is properly installed and
configured before using this function.

The logic extraction process involves traversing the syntax tree of the Verilog code and identifying
relevant assignments and expressions within the specified cell.

Error messages and warnings are logged using the spdlog library.

Definition at line 755 of file LogicExtractor.cpp.

Here is the call graph for this function:

extractLogicFromVerilog LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

Here is the caller graph for this function:

extractLogicFromVerilogfuncLibFilemain

7.19 LogicExtractor.hpp

Go to the documentation of this file.
00001 // include/LogicExtractor.hpp

00002

00003 #ifndef LOGIC_EXTRACTOR_HPP

00004 #define LOGIC_EXTRACTOR_HPP

00005

00006 #include "verilog_utils.hpp"

00007

00008 // Structure to represent a gate instance's information

00009 struct GateInfo {

00010 slang::parsing::TokenKind kind; // Store the TokenKind for reliable checks

00011 std::string gateTypeName; // Store the string name like "and", "xor"

00012 std::vector<std::string> inputSignals;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.19 LogicExtractor.hpp 167

00013 std::string outputSignal;

00014 };

00015

00016 // Visitor class to extract netlist information and derive logic expressions

00017 class LogicExtractor : public slang::syntax::SyntaxVisitor<LogicExtractor> {

00018 public:

00019 // Constructor takes the target cell name

00020 explicit LogicExtractor(const std::string &targetCell)

00021 : targetCell_(targetCell), inTargetModule_(false), parsingComplete_(false) {}

00022

00023 // --- Visitor Handlers ---

00024 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

00025 void handle(

00026 const slang::syntax::PortDeclarationSyntax &portDecl); // Handles direction/type declaration

00027 void

00028 handle(const slang::syntax::NonAnsiPortListSyntax &portList); // Handles port names list in header

00029 void

00030 handle(const slang::syntax::NetDeclarationSyntax &netDecl); // To find explicitly declared wires

00031 void handle(const slang::syntax::PrimitiveInstantiationSyntax

00032 &primitiveInst); // Handles gate instantiation

00033 // Potentially handle ContinuousAssignSyntax if needed later:

00034 // void handle(const slang::syntax::ContinuousAssignSyntax& assign);

00035

00036 // --- Access Extracted Info (for Step 1 debugging) ---

00037 const std::unordered_map<std::string, GateInfo> &getExtractedGates()const {

00038 return gateOutputDrivers_;

00039 }

00040 const std::unordered_set<std::string> &getPrimaryInputs()const { return primaryInputs_; }

00041 const std::unordered_set<std::string> &getPrimaryOutputs()const { return primaryOutputs_; }

00042 const std::unordered_set<std::string> &getInternalWires()const { return internalWires_; }

00043

00044 // --- Logic Derivation (Commented out for Step 1) ---

00045 std::map<std::string, std::string> getLogicExpressions();

00046

00047 private:

00048 // --- Internal State ---

00049 const std::string &targetCell_;

00050 bool inTargetModule_;

00051 bool parsingComplete_; // Flag to indicate AST traversal is done

00052

00053 // Netlist Information

00054 std::unordered_set<std::string> primaryInputs_;

00055 std::unordered_set<std::string> primaryOutputs_;

00056 std::unordered_set<std::string> internalWires_; // Includes gate outputs

00057

00058 // Temporary map to store directions found in PortDeclarationSyntax

00059 // Key: port name, Value: direction ("input", "output", "inout", "unknown")

00060 std::unordered_map<std::string, std::string> portDirections_;

00061

00062 // Map: output signal name -> GateInfo driving it

00063 std::unordered_map<std::string, GateInfo> gateOutputDrivers_;

00064

00065 // Map: signal name -> Logic expression string (Memoization Cache) - (Used in Step 2)

00066 std::unordered_map<std::string, std::string> logicCache_;

00067

00068 // --- Helper Methods ---

00069 // Recursive function to derive logic for a given signal (Used in Step 2)

00070 std::string deriveLogicRecursive(const std::string &signalName);

00071 // Helper to format expressions based on gate type (Used in Step 2)

00072 std::string formatExpression(const GateInfo &gateInfo,

00073 const std::vector<std::string> &inputExprs);

00074 };

00075

00076 // --- Function Declaration ---

00077 // For Step 1, this function will just run the visitor and maybe print summary

00078 void extractAndPrintNetlistInfo(const std::string &verilog_file, const std::string &cell);

00079

00080 // Function to be implemented in Step 2

00081 std::map<std::string, std::string> extractLogicFromVerilog(const std::string &verilog_file,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

168 File Documentation

00082 const std::string &cell);

00083

00084 #endif // LOGIC_EXTRACTOR_HPP

7.20 include/verilog_utils.hpp File Reference

#include <fstream>

#include <unordered_map>

#include <unordered_set>

#include "slang/syntax/SyntaxPrinter.h"

#include "slang/syntax/SyntaxVisitor.h"

#include "spdlog/spdlog.h"

Include dependency graph for verilog_utils.hpp:

include/verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

This graph shows which files directly or indirectly include this file:

include/verilog_utils.hpp

include/LibFile.hpp include/LogicExtractor.hpp src/verilog_utils.cpp

include/LibFileOperations.hpp

include/LibraryComparator.hpp src/LibFile.cpp

src/LibFileOperations.cpp src/main.cpp

src/LibraryComparator.cpp

src/LogicExtractor.cpp

Classes

• class VerilogVisitor
• class CellExtractor
• class CellPrinter
• class ModuleRewriter

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.21 verilog_utils.hpp 169

Functions

• void getAST (const std::string &verilog_file, const std::string &cell)

7.20.1 Function Documentation

7.20.1.1 getAST()

void getAST (

const std::string & verilog_file,

const std::string & cell)

Definition at line 544 of file verilog_utils.cpp.

Here is the call graph for this function:

getAST CellExtractor::foundTargetCell

7.21 verilog_utils.hpp

Go to the documentation of this file.
00001 // verilog_utils.hpp

00002

00003 #ifndef VERILOG_UTILS_H

00004 #define VERILOG_UTILS_H

00005

00006 #include <fstream>

00007 #include <unordered_map>

00008 #include <unordered_set>

00009

00010 #include "slang/syntax/SyntaxPrinter.h"

00011 #include "slang/syntax/SyntaxVisitor.h"

00012 #include "spdlog/spdlog.h" // Include spdlog

00013

00014 // Creating custom visitor class

00015 class VerilogVisitor : public slang::syntax::SyntaxVisitor<VerilogVisitor> {

00016 public:

00017 explicit VerilogVisitor(const std::string &targetCell)

00018 : targetCell_(targetCell), depth_(0), inTargetModule_(false) {}

00019 void handle(const slang::syntax::SyntaxNode &node);

00020 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

170 File Documentation

00021 void handle(const slang::syntax::PortDeclarationSyntax &portDecl);

00022 void handle(const slang::syntax::HierarchyInstantiationSyntax &hierarchyInst);

00023 // void handle(const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst);

00024 void handle(const slang::syntax::SpecifyBlockSyntax &specifyBlock);

00025

00026 private:

00027 const std::string &targetCell_;

00028 int depth_;

00029 bool inTargetModule_;

00030 };

00031

00032 // Creating a Rewriter to extract a specific cell

00033 class CellExtractor : public slang::syntax::SyntaxRewriter<CellExtractor> {

00034 public:

00035 explicit CellExtractor(const std::string &targetCell)

00036 : targetCell_(targetCell), foundTarget_(false) {}

00037 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

00038 bool foundTargetCell() const;

00039

00040 private:

00041 const std::string &targetCell_;

00042 bool foundTarget_;

00043 };

00044

00045 // Print specific cell when visiting SyntaxTree

00046 class CellPrinter : public slang::syntax::SyntaxVisitor<CellPrinter> {

00047 public:

00048 explicit CellPrinter(const std::string &targetCell, std::ostream &out)

00049 : targetCell_(targetCell), out_(out), foundTarget_(false) {}

00050 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

00051

00052 private:

00053 const std::string &targetCell_;

00054 std::ostream &out_;

00055 bool foundTarget_;

00056 };

00057

00058 // Comprehensive module rewriter for adding ports, instances, and connections

00059 class ModuleRewriter : public slang::syntax::SyntaxRewriter<ModuleRewriter> {

00060 public:

00061 explicit ModuleRewriter(const std::vector<std::string> &inputPins,

00062 const std::vector<std::string> &outputPins,

00063 const std::pair<std::string, std::string> &supercell_entry,

00064 int instance_count, std::shared_ptr<spdlog::logger> logger)

00065 : inputPins_(inputPins), outputPins_(outputPins), cellName_(supercell_entry.first),

00066 moduleName_(supercell_entry.second), logger_(logger), depth_(0),

00067 instance_count_(instance_count) {}

00068 std::shared_ptr<spdlog::logger> logger_;

00069 void handle(const slang::syntax::SyntaxNode &node);

00070 void handle(const slang::syntax::ModuleDeclarationSyntax &module);

00071

00072 private:

00073 const std::vector<std::string> &inputPins_;

00074 const std::vector<std::string> &outputPins_;

00075 const std::string cellName_;

00076 const std::string moduleName_;

00077 std::map<std::string, std::string> portInfoMap_; // Map from port name to direction

00078 int depth_;

00079 int instance_count_;

00080 };

00081

00082 void getAST(const std::string &verilog_file, const std::string &cell);

00083

00084 #endif // VERILOG_UTILS_H

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.22 include/version.h File Reference 171

7.22 include/version.h File Reference

This graph shows which files directly or indirectly include this file:

include/version.h

include/LibFile.hpp

src/main.cpp

include/LibraryComparator.hpp

include/LogicComparator.hpp

include/LibFileOperations.hpp

src/LibFile.cpp

src/LibFileOperations.cpp

src/LibraryComparator.cpp

src/LogicComparator.cpp

Macros

• #define APP_NAME ”ZlibValidation”
• #define APP_VERSION_MAJOR 1
• #define APP_VERSION_MINOR 1
• #define APP_VERSION_PATCH 2
• #define APP_VERSION ”1.1.2”
• #define APP_AUTHOR ”Song Zixuan”
• #define APP_CONTACT ”cedar@zju.edu.cn”
• #define BUILD_TIMESTAMP ”2025-04-15 16:33:51”

7.22.1 Macro Definition Documentation

7.22.1.1 APP_AUTHOR

#define APP_AUTHOR "Song Zixuan"

Definition at line 10 of file version.h.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

172 File Documentation

7.22.1.2 APP_CONTACT

#define APP_CONTACT "cedar@zju.edu.cn"

Definition at line 11 of file version.h.

7.22.1.3 APP_NAME

#define APP_NAME "ZlibValidation"

Definition at line 5 of file version.h.

7.22.1.4 APP_VERSION

#define APP_VERSION "1.1.2"

Definition at line 9 of file version.h.

7.22.1.5 APP_VERSION_MAJOR

#define APP_VERSION_MAJOR 1

Definition at line 6 of file version.h.

7.22.1.6 APP_VERSION_MINOR

#define APP_VERSION_MINOR 1

Definition at line 7 of file version.h.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.23 version.h 173

7.22.1.7 APP_VERSION_PATCH

#define APP_VERSION_PATCH 2

Definition at line 8 of file version.h.

7.22.1.8 BUILD_TIMESTAMP

#define BUILD_TIMESTAMP "2025-04-15 16:33:51"

Definition at line 12 of file version.h.

7.23 version.h

Go to the documentation of this file.
00001 // version.h.in

00002 #pragma once

00003

00004 // Auto-generated by CMake - DO NOT EDIT

00005 #define APP_NAME "ZlibValidation"

00006 #define APP_VERSION_MAJOR 1

00007 #define APP_VERSION_MINOR 1

00008 #define APP_VERSION_PATCH 2

00009 #define APP_VERSION "1.1.2"

00010 #define APP_AUTHOR "Song Zixuan"

00011 #define APP_CONTACT "cedar@zju.edu.cn"

00012 #define BUILD_TIMESTAMP "2025-04-15 16:33:51"

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

174 File Documentation

7.24 README.md File Reference

7.25 src/Iterators.cpp File Reference

#include "Iterators.hpp"

Include dependency graph for Iterators.cpp:

src/Iterators.cpp

Iterators.hpp

si2dr_liberty.h

LibAttribute.hppLibGroup.hpp

string

7.26 Iterators.cpp

Go to the documentation of this file.
00001 #include "Iterators.hpp"

00002

00003 GroupsIterator::GroupsIterator(si2drGroupsIdT groups, si2drErrorT &err)

00004 : groups_(groups), err_(err) {

00005 group_ = si2drIterNextGroup(groups_, &err_);

00006 }

00007 GroupsIterator::~GroupsIterator() { si2drIterQuit(groups_, &err_); }

00008

00009 void GroupsIterator::next() { group_ = si2drIterNextGroup(groups_, &err_); }

00010 bool GroupsIterator::end() { return si2drObjectIsNull(group_, &err_); }

00011

00012 LibGroup GroupsIterator::get() { return LibGroup(group_, err_); }

00013

00014 AttributesIterator::AttributesIterator(si2drAttrsIdT attrs, si2drErrorT &err)

00015 : attrs_(attrs), err_(err) {

00016 attr_ = si2drIterNextAttr(attrs_, &err_);

00017 }

00018 AttributesIterator::~AttributesIterator() { si2drIterQuit(attrs_, &err_); }

00019

00020 void AttributesIterator::next() { attr_ = si2drIterNextAttr(attrs_, &err_); }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 175

00021 bool AttributesIterator::end() { return si2drObjectIsNull(attr_, &err_); }

00022

00023 LibAttribute AttributesIterator::get() { return LibAttribute(attr_, err_); }

00024

00025 ValuesIterator::ValuesIterator(si2drValuesIdT values, si2drErrorT &err)

00026 : values_(values), err_(err) {

00027 si2drIterNextComplexValue(values_, &vtype_, &int_, &float_, &str_, &bool_, &exprp_, &err_);

00028 }

00029 ValuesIterator::~ValuesIterator() { si2drIterQuit(values_, &err_); }

00030

00031 void ValuesIterator::next() {

00032 si2drIterNextComplexValue(values_, &vtype_, &int_, &float_, &str_, &bool_, &exprp_, &err_);

00033 }

00034 bool ValuesIterator::end() { return vtype_ == SI2DR_UNDEFINED_VALUETYPE; }

7.27 src/json_utils.cpp File Reference

#include "json_utils.hpp"

Include dependency graph for json_utils.cpp:

src/json_utils.cpp

json_utils.hpp

string

nlohmann/json.hpp

si2dr_liberty.h

spdlog/spdlog.hIterators.hpp

LibGroup.hpp LibAttribute.hpp

Functions

• std::vector< double > parseStringToVector (const std::string &str)
Parses a string representation of a vector of doubles into a vector of doubles.

• json generateLutJson (LibGroup &lib_lut_group, si2drErrorT &err)
Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

• json generateTimingJson (LibGroup &lib_timing_group, si2drErrorT &err)
Generates a JSON representation of timing information from a library timing group.

• json generatePowerJson (LibGroup &lib_power_group, si2drErrorT &err)
Converts a Liberty power group into a JSON representation.

• std::pair< std::string, json > generatePinJson (LibGroup &lib_pin_group, si2drErrorT &err)
Generates a JSON representation of a Liberty pin group.

• json generateCellJson (LibGroup &lib_cell_group, si2drErrorT &err)
Generates a JSON representation of a cell from a LibGroup object.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

176 File Documentation

7.27.1 Function Documentation

7.27.1.1 generateCellJson()

json generateCellJson (

LibGroup & lib_cell_group,

si2drErrorT & err)

Generates a JSON representation of a cell from a LibGroup object.

This function processes a LibGroup representing a cell and converts it into a JSON object. It extracts
the cell name and processes specific attributes such as area, cell_leakage_power, and cell_footprint. It
also processes pins within the cell by categorizing them based on their direction (input, output, internal,
inout).

Parameters

lib_cell_group The LibGroup object representing the cell
err Reference to a si2drErrorT object for error handling

Returns

json A JSON object containing the cell's information with the following structure:

• ”cell_name”: string - name of the cell

• ”area”: float (optional) - cell area if present

• ”cell_leakage_power”: float (optional) - cell leakage power if present

• ”cell_footprint”: string (optional) - cell footprint if present

• ”input_pins”: array - list of input pins

• ”output_pins”: array - list of output pins

• ”internal_pins”: array - list of internal pins

• ”inout_pins”: array - list of inout pins

Definition at line 271 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 177

Here is the call graph for this function:

generateCellJson

GroupsIterator::end

AttributesIterator::end

generatePinJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

178 File Documentation

7.27.1.2 generateLutJson()

json generateLutJson (

LibGroup & lib_lut_group,

si2drErrorT & err)

Generates a JSON object representation of a look-up table (LUT) from a LibGroup object.

This function iterates through the attributes of the provided LibGroup object representing a LUT and
converts them into a JSON structure. It specifically handles the following attributes:

• ”index_1”: Converted to a vector and stored in the JSON

• ”index_2”: Converted to a vector and stored in the JSON

• ”values”: Each value is parsed into a vector and added to an array in the JSON

Any other attributes encountered will trigger a warning message.

Parameters

lib_lut_group The LibGroup object containing the LUT data to be converted
err Reference to an si2drErrorT object to track any errors during processing

Returns

json A JSON object representing the LUT data with keys for ”index_1”, ”index_2”, and ”values”

Definition at line 60 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 179

Here is the call graph for this function:

generateLutJson

AttributesIterator::end

ValuesIterator::end

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

LibAttribute::getValues

AttributesIterator
::next

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.27.1.3 generatePinJson()

std::pair< std::string, json > generatePinJson (

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

180 File Documentation

LibGroup & lib_pin_group,

si2drErrorT & err)

Generates a JSON representation of a Liberty pin group.

This function traverses a Liberty pin group, extracts relevant attributes and sub-groups, and converts
them into a JSON object. It also determines the pin's direction.

Processes the following pin attributes:

• direction

• max_transition, capacitance, rise_capacitance, fall_capacitance, max_capacitance (float types)

• function, power_down_function, related_ground_pin, related_power_pin, three_state (string
types)

• clock (boolean type)

Handles the following sub-groups:

• internal_power: Converted using generatePowerJson()

• timing: Converted using generateTimingJson()

Parameters

lib_pin_group The Liberty pin group to process
err Reference to an error object for tracking Liberty API errors

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 181

Returns

A pair containing the pin direction (string) and the JSON representation of the pin

Definition at line 205 of file json_utils.cpp.

Here is the call graph for this function:

generatePinJson

GroupsIterator::end

AttributesIterator::end

generatePowerJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

generateTimingJson

LibAttribute::getBoolean

LibAttribute::getFloat

LibGroup::getName

generateLutJson ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

182 File Documentation

Here is the caller graph for this function:

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.27.1.4 generatePowerJson()

json generatePowerJson (

LibGroup & lib_power_group,

si2drErrorT & err)

Converts a Liberty power group into a JSON representation.

This function processes a Liberty power group and converts its attributes and subgroups into a JSON
object. It handles attributes like ”when”, ”related_pin”, and ”related_pg_pin”, as well as ”rise_power”
and ”fall_power” subgroups.

Parameters

lib_power_group The Liberty power group to convert
err Reference to an si2drErrorT object for error handling

Returns

json A JSON object representing the power group data

The function:

• Extracts string attributes (when, related_pin, related_pg_pin)

• Processes rise_power and fall_power subgroups by converting them to LUT JSON format

• Logs warnings for unknown power subgroup types

Definition at line 152 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 183

Here is the call graph for this function:

generatePowerJson

GroupsIterator::end

AttributesIterator::end

generateLutJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

generatePowerJsongeneratePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.27.1.5 generateTimingJson()

json generateTimingJson (

LibGroup & lib_timing_group,

si2drErrorT & err)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

184 File Documentation

Generates a JSON representation of timing information from a library timing group.

This function extracts timing attributes and sub-groups from a Liberty timing group and organizes them
into a JSON object. It processes standard timing attributes like 'related_pin', 'timing_type', 'timing←↩

_sense', and 'when', as well as timing tables such as 'cell_fall', 'cell_rise', 'fall_transition', 'rise_←↩

transition', 'fall_constraint', and 'rise_constraint'.

Parameters

lib_timing_group The Liberty timing group to process
err Reference to an si2drErrorT object for error reporting

Returns

json A JSON object containing the extracted timing information

Definition at line 104 of file json_utils.cpp.

Here is the call graph for this function:

generateTimingJson

GroupsIterator::end

AttributesIterator::end

generateLutJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.27 src/json_utils.cpp File Reference 185

Here is the caller graph for this function:

generateTimingJsongeneratePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.27.1.6 parseStringToVector()

std::vector< double > parseStringToVector (

const std::string & str)

Parses a string representation of a vector of doubles into a vector of doubles.

This function takes a string containing comma-separated numbers, cleans it by removing backslashes
and newline characters, and then converts each comma-separated value into a double that is added to
the resulting vector.

Parameters

str The input string to be parsed, containing comma-separated numbers

Returns

std::vector<double> A vector of doubles parsed from the input string

Exceptions

std::invalid_argument If the string contains values that cannot be converted to double
std::out_of_range If the string contains values that are out of range for double

Definition at line 25 of file json_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

186 File Documentation

Here is the caller graph for this function:

parseStringToVectorgenerateLutJson

generatePowerJson

generateTimingJson

generatePinJsongenerateCellJsonLibFile::parse

LibraryComparator::
LibraryComparator

LibFile::logic

LibFile::mono

parseLibFile

LibFile::supercell

funcLibFile

main

monoCheckLibFile

supercellLibFile

LibFile::verilogLibFile::spice

verilogLibFile

spiceLibFile

7.28 json_utils.cpp

Go to the documentation of this file.
00001 #include "json_utils.hpp"

00002

00003 /*

00004 json 类型的值可以是以下几种类型之一：
00005 方括号 []：用于包含一组有序的值（数组）。
00006 数组中的每个值可以是任意类型的 JSON 值，包括对象、数组、字符串、数字、布尔值或 null。
00007 花括号 {}：用于包含一组键值对（对象）。
00008 对象中的每个键都是一个字符串，值可以是任意类型的 JSON 值，包括对象、数组、字符串、数字、布尔值或
00009 null。
00010 */

00011

00025 std::vector<double> parseStringToVector(const std::string &str) {

00026 std::vector<double> result;

00027 std::string cleaned_str;

00028

00029 // Remove backslashes and newline characters

00030 for (char c : str) {

00031 if (c != '\\' && c != '\n') {

00032 cleaned_str += c;

00033 }

00034 }

00035

00036 std::stringstream ss(cleaned_str);

00037 std::string item;

00038 while (std::getline(ss, item, ',')) {

00039 result.push_back(std::stod(item));

00040 }

00041 return result;

00042 }

00043

00060 json generateLutJson(LibGroup &lib_lut_group, si2drErrorT &err) {

00061 json lut_json;

00062

00063 AttributesIterator attr_iter(lib_lut_group.getAttrs(), err);

00064 for (; !attr_iter.end(); attr_iter.next()) {

00065 LibAttribute lib_attr = attr_iter.get();

00066 std::string lut_attr_name = lib_attr.getName();

00067

00068 // spdlog::debug("LUT Attribute Name: {}", lib_attr.getName());

00069 // spdlog::debug("Is Complex? {}", lib_attr.isComplex());

00070

00071 if (lut_attr_name == "index_1" || lut_attr_name == "index_2") {

00072 ValuesIterator values_iter(lib_attr.getValues(), err);

00073 for (; !values_iter.end(); values_iter.next()) {

00074 // spdlog::debug("Type: {}", int(values_iter.vtype_)); // 5 is string

00075 // spdlog::debug("Str: {}", values_iter.str_);

00076 lut_json[lut_attr_name] = parseStringToVector(std::string(values_iter.str_));

00077 }

00078 } else if (lut_attr_name == "values") {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.28 json_utils.cpp 187

00079 ValuesIterator values_iter(lib_attr.getValues(), err);

00080 for (; !values_iter.end(); values_iter.next()) {

00081 // spdlog::debug("{}", values_iter.str_);

00082 lut_json["values"].push_back(parseStringToVector(std::string(values_iter.str_)));

00083 }

00084 } else {

00085 spdlog::warn("Unknown LUT attribute name: {}", lut_attr_name);

00086 }

00087 }

00088 return lut_json;

00089 }

00090

00104 json generateTimingJson(LibGroup &lib_timing_group, si2drErrorT &err) {

00105 json timing_json;

00106

00107 AttributesIterator attr_iter(lib_timing_group.getAttrs(), err);

00108 for (; !attr_iter.end(); attr_iter.next()) {

00109 LibAttribute lib_attr = attr_iter.get();

00110

00111 std::string attr_name = lib_attr.getName();

00112 if (attr_name == "related_pin" || attr_name == "timing_type" || attr_name == "timing_sense" ||

00113 attr_name == "when") {

00114 timing_json[attr_name] = lib_attr.getString();

00115 }

00116 // More timing attributes can be added here

00117 }

00118

00119 GroupsIterator timing_sub_group_iter(lib_timing_group.getGroups(), err);

00120 for (; !timing_sub_group_iter.end(); timing_sub_group_iter.next()) {

00121 LibGroup lib_timing_sub_group = timing_sub_group_iter.get();

00122

00123 std::string timing_sub_group_type = lib_timing_sub_group.getType();

00124 // std::string timing_sub_group_name = lib_timing_sub_group.getName();

00125 if (timing_sub_group_type == "cell_fall" || timing_sub_group_type == "cell_rise" ||

00126 timing_sub_group_type == "fall_transition" || timing_sub_group_type == "rise_transition" ||

00127 timing_sub_group_type == "fall_constraint" || timing_sub_group_type == "rise_constraint") {

00128 timing_json[timing_sub_group_type] = generateLutJson(lib_timing_sub_group, err);

00129 } else {

00130 spdlog::warn("Unknown timing sub group type: {}", timing_sub_group_type);

00131 }

00132 }

00133 return timing_json;

00134 }

00135

00152 json generatePowerJson(LibGroup &lib_power_group, si2drErrorT &err) {

00153 json power_json;

00154

00155 AttributesIterator attr_iter(lib_power_group.getAttrs(), err);

00156 for (; !attr_iter.end(); attr_iter.next()) {

00157 LibAttribute lib_attr = attr_iter.get();

00158

00159 std::string attr_name = lib_attr.getName();

00160 if (attr_name == "when" || attr_name == "related_pin" || attr_name == "related_pg_pin") {

00161 power_json[attr_name] = lib_attr.getString();

00162 }

00163 // More power attributes can be added here

00164 }

00165

00166 GroupsIterator power_sub_group_iter(lib_power_group.getGroups(), err);

00167 for (; !power_sub_group_iter.end(); power_sub_group_iter.next()) {

00168 LibGroup lib_power_sub_group = power_sub_group_iter.get();

00169

00170 std::string power_sub_group_type = lib_power_sub_group.getType();

00171 // std::string power_sub_group_name = lib_power_sub_group.getName();

00172 if (power_sub_group_type == "rise_power") {

00173 // spdlog::debug("Rise Power: {}", power_sub_group_name);

00174 power_json["rise_power"] = generateLutJson(lib_power_sub_group, err);

00175 } else if (power_sub_group_type == "fall_power") {

00176 power_json["fall_power"] = generateLutJson(lib_power_sub_group, err);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

188 File Documentation

00177 } else {

00178 spdlog::warn("Unknown power sub group type: {}", power_sub_group_type);

00179 }

00180 }

00181 return power_json;

00182 }

00183

00205 std::pair<std::string, json> generatePinJson(LibGroup &lib_pin_group, si2drErrorT &err) {

00206 json pin_json;

00207 std::string direction;

00208 pin_json["pin_name"] = lib_pin_group.getName();

00209

00210 AttributesIterator attr_iter(lib_pin_group.getAttrs(), err);

00211 for (; !attr_iter.end(); attr_iter.next()) {

00212 LibAttribute lib_attr = attr_iter.get();

00213

00214 std::string attr_name = lib_attr.getName();

00215 if (attr_name == "direction") {

00216 direction = lib_attr.getString();

00217 } else if (attr_name == "max_transition" || attr_name == "capacitance" ||

00218 attr_name == "rise_capacitance" || attr_name == "fall_capacitance" ||

00219 attr_name == "max_capacitance") {

00220 pin_json[attr_name] = lib_attr.getFloat();

00221 } else if (attr_name == "function" || attr_name == "power_down_function" ||

00222 attr_name == "related_ground_pin" || attr_name == "related_power_pin" ||

00223 attr_name == "three_state") {

00224 pin_json[attr_name] = lib_attr.getString();

00225 } else if (attr_name == "clock") {

00226 pin_json[attr_name] = lib_attr.getBoolean();

00227 }

00228 // More pin attributes can be added here

00229 }

00230

00231 GroupsIterator pin_sub_group_iter(lib_pin_group.getGroups(), err);

00232 for (; !pin_sub_group_iter.end(); pin_sub_group_iter.next()) {

00233 LibGroup lib_pin_sub_group = pin_sub_group_iter.get();

00234

00235 std::string pin_sub_group_type = lib_pin_sub_group.getType();

00236 // std::string pin_sub_group_name = lib_pin_sub_group.getName();

00237 if (pin_sub_group_type == "internal_power") {

00238 json power_json = generatePowerJson(lib_pin_sub_group, err);

00239 pin_json["power_arcs"].push_back(power_json);

00240 } else if (pin_sub_group_type == "timing") {

00241 // spdlog::debug("Has Timing: {}", lib_pin_group.getName());

00242 json timing_json = generateTimingJson(lib_pin_sub_group, err);

00243 pin_json["timing_arcs"].push_back(timing_json);

00244 } else {

00245 spdlog::warn("Unknown pin sub group type: {}", pin_sub_group_type);

00246 }

00247 }

00248 return std::make_pair(direction, pin_json);

00249 }

00250

00271 json generateCellJson(LibGroup &lib_cell_group, si2drErrorT &err) {

00272 json cell_json;

00273 cell_json["cell_name"] = lib_cell_group.getName();

00274

00275 AttributesIterator attr_iter(lib_cell_group.getAttrs(), err);

00276 for (; !attr_iter.end(); attr_iter.next()) {

00277 LibAttribute lib_attr = attr_iter.get();

00278

00279 std::string attr_name = lib_attr.getName();

00280 if (attr_name == "area" || attr_name == "cell_leakage_power") {

00281 cell_json[attr_name] = lib_attr.getFloat();

00282 } else if (attr_name == "cell_footprint") {

00283 cell_json[attr_name] = lib_attr.getString();

00284 }

00285 // More cell attributes can be added here

00286 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.29 src/LibAtrribute.cpp File Reference 189

00287

00288 GroupsIterator cell_sub_group_iter(lib_cell_group.getGroups(), err);

00289 for (; !cell_sub_group_iter.end(); cell_sub_group_iter.next()) {

00290 LibGroup lib_cell_sub_group = cell_sub_group_iter.get();

00291

00292 std::string cell_sub_group_type = lib_cell_sub_group.getType();

00293 // std::string cell_sub_group_name = lib_cell_sub_group.getName();

00294

00295 // spdlog::debug("Cell Sub Group Type: {}", cell_sub_group_type);

00296 // spdlog::debug("Cell Sub Group Name: {}", cell_sub_group_name);

00297

00298 if (cell_sub_group_type == "pin") {

00299 auto [direction, pin_json] = generatePinJson(lib_cell_sub_group, err);

00300 if (direction == "input") {

00301 cell_json["input_pins"].push_back(pin_json);

00302 } else if (direction == "output") {

00303 cell_json["output_pins"].push_back(pin_json);

00304 } else if (direction == "internal") {

00305 cell_json["internal_pins"].push_back(pin_json);

00306 } else if (direction == "inout") {

00307 cell_json["inout_pins"].push_back(pin_json);

00308 } else {

00309 spdlog::warn("Unknown direction: {}", direction);

00310 }

00311 }

00312 }

00313 return cell_json;

00314 }

7.29 src/LibAtrribute.cpp File Reference

#include "LibAttribute.hpp"

Include dependency graph for LibAtrribute.cpp:

src/LibAtrribute.cpp

LibAttribute.hpp

string si2dr_liberty.h

7.30 LibAtrribute.cpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

190 File Documentation

00001 #include "LibAttribute.hpp"

00002

00003 LibAttribute::LibAttribute(si2drAttrIdT attr, si2drErrorT &err) : attr_(attr), err_(err) {}

00004

00005 LibAttribute::~LibAttribute() {}

00006

00007 std::string LibAttribute::getName() {

00008 si2drStringT name = si2drAttrGetName(attr_, &err_);

00009 return name ? std::string(name) : std::string();

00010 }

00011

00012 bool LibAttribute::isComplex() { return si2drAttrGetAttrType(attr_, &err_) ? 1 : 0; }

00013

00014 si2drValuesIdT LibAttribute::getValues() { return si2drComplexAttrGetValues(attr_, &err_); }

00015

00016 long int LibAttribute::getInt() { return si2drSimpleAttrGetInt32Value(attr_, &err_); }

00017

00018 double LibAttribute::getFloat() { return si2drSimpleAttrGetFloat64Value(attr_, &err_); }

00019

00020 std::string LibAttribute::getString() {

00021 si2drStringT str = si2drSimpleAttrGetStringValue(attr_, &err_);

00022 return str ? std::string(str) : std::string();

00023 }

00024

00025 bool LibAttribute::getBoolean() { return si2drSimpleAttrGetBooleanValue(attr_, &err_) ? 1 : 0; }

7.31 src/LibFile.cpp File Reference

#include "LibFile.hpp"

Include dependency graph for LibFile.cpp:

src/LibFile.cpp

LibFile.hpp

chrono filesystem

fstream

string

unordered_set nlohmann/json.hpp

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

spdlog/spdlog.h Iterators.hpp

json_utils.hppverilog_utils.hpp version.h

LibAttribute.hppLibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.hslang/syntax/SyntaxVisitor.h

7.32 LibFile.cpp

Go to the documentation of this file.
00001 #include "LibFile.hpp"

00002

00015 LibFile::LibFile(const std::string &filepath, const std::string &loggername)

00016 : filepath_(filepath), loggername_(loggername) {

00017 filename_ = filepath_.string();

00018 basename_ = filepath_.stem().string();

00019 jsonname_ = basename_ + ".json";

00020

00021 auto console_sink = std::make_shared<spdlog::sinks::stdout_color_sink_mt>();

00022 console_sink->set_level(spdlog::level::info);

00023

00024 auto file_sink = std::make_shared<spdlog::sinks::basic_file_sink_mt>(loggername_, true);

00025 file_sink->set_level(spdlog::level::debug);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 191

00026

00027 std::vector<spdlog::sink_ptr> sinks{console_sink, file_sink};

00028 logger_ = std::make_shared<spdlog::logger>(loggername_, sinks.begin(), sinks.end());

00029 logger_->set_level(spdlog::level::debug);

00030

00031 logger_->info("Created LibFile object for '{}'", filename_);

00032 logger_->info("Debug log in: '{}'", loggername_);

00033 }

00034

00035 LibFile::~LibFile() { logger_->info("Closing file: '{}'", filename_); }

00036

00046 void LibFile::writeJsonToFile() {

00047 std::ofstream out(jsonname_);

00048 if (!out.is_open()) {

00049 logger_->error("Could not open file '{}' for writing", jsonname_);

00050 return;

00051 }

00052 out << lib_json_.dump(2);

00053 out.close();

00054 logger_->info("JSON data written to '{}'", jsonname_);

00055 }

00056

00077 void LibFile::read() {

00078 logger_->info("Reading '{}' ...", filename_);

00079

00080 auto start = std::chrono::high_resolution_clock::now();

00081 si2drReadLibertyFile(const_cast<char *>(filepath_.c_str()), &err_);

00082 auto end = std::chrono::high_resolution_clock::now();

00083 std::chrono::duration<double> duration = end - start;

00084

00085 if (err_ == SI2DR_INVALID_NAME) {

00086 logger_->error("Could not open file '{}' for parsing, quitting...", filename_);

00087 exit(301);

00088 } else if (err_ == SI2DR_SYNTAX_ERROR) {

00089 logger_->error("Syntax Errors were detected in the input file!");

00090 exit(401);

00091 } else {

00092 logger_->info("Done. Read time: {:.2f} seconds", duration.count());

00093 }

00094 }

00095

00116 void LibFile::parse() {

00117 si2drPIInit(&err_); // Initialize private error handler

00118 this->read(); // Read the Liberty file

00119

00120 logger_->info("Parsing '{}' ...", filename_);

00121 // Create a scope for the top-level groups iteration

00122 {

00123 GroupsIterator group_iter(si2drPIGetGroups(&err_), err_);

00124 for (; !group_iter.end(); group_iter.next()) {

00125 LibGroup lib_group = group_iter.get();

00126

00127 if (lib_group.getName() != "") {

00128 libname_ = lib_group.getName();

00129 lib_json_["library_name"] = this->libname_;

00130 logger_->info("Library Name: {}", libname_);

00131 } else {

00132 logger_->warn("Library Name: <NONAME>");

00133 }

00134 // Second level groups

00135 GroupsIterator sub_group_iter(lib_group.getGroups(), err_);

00136 for (; !sub_group_iter.end(); sub_group_iter.next()) {

00137 LibGroup lib_sub_group = sub_group_iter.get();

00138

00139 std::string sub_group_type = lib_sub_group.getType();

00140 std::string sub_group_name = lib_sub_group.getName();

00141

00142 if (sub_group_type == "cell") {

00143 logger_->debug("Cell Name: {}", sub_group_name);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

192 File Documentation

00144 // if (sub_group_name != "AN2D0") {

00145 // continue;

00146 // }

00147 // Handle each cell

00148 json cell_json = generateCellJson(lib_sub_group, err_);

00149 lib_json_["cells"].push_back(cell_json);

00150 } else if (sub_group_type == "operating_conditions") {

00151 logger_->info("Operating Conditions: {}", sub_group_name);

00152 // Get PVT from Operating Conditions

00153 AttributesIterator attr_iter(lib_sub_group.getAttrs(), err_);

00154 for (; !attr_iter.end(); attr_iter.next()) {

00155 LibAttribute lib_attr = attr_iter.get();

00156 logger_->debug("Attribute Name: {}", lib_attr.getName());

00157 logger_->debug("Int Value: {}", lib_attr.getInt());

00158 logger_->debug("Float Value: {}", lib_attr.getFloat());

00159 logger_->debug("String Value: {}", lib_attr.getString());

00160 if (lib_attr.getName() == "process") {

00161 process_ = lib_attr.getInt();

00162 lib_json_["process"] = process_;

00163 } else if (lib_attr.getName() == "voltage") {

00164 voltage_ = lib_attr.getFloat();

00165 // Round to 2 decimal places to avoid floating-point precision issues

00166 lib_json_["voltage"] = std::round(voltage_ * 100) / 100.0;

00167 } else if (lib_attr.getName() == "temperature") {

00168 temperature_ = lib_attr.getInt();

00169 lib_json_["temperature"] = temperature_;

00170 }

00171 }

00172 logger_->info("P: {}, V: {}, T: {}", process_, voltage_, temperature_);

00173 }

00174 // sub_group_iter's lifetime ends here, and the destructor is called

00175 }

00176 }

00177 // group_iter's lifetime ends here, and the destructor is called

00178 }

00179 si2drPIQuit(&err_);

00180 }

00181

00182 void LibFile::modify() { logger_->info("Modifying the file..."); }

00183

00205 bool LibFile::checkTimingArcMonotonicity(const json &cell, const json &pin, const json &arc,

00206 const std::string &timing_arc_name, const bool is_slew) {

00207 if (arc.contains("when") && !arc["when"].get<std::string>().empty()) {

00208 logger_->debug(

00209 "Checking cell: '{}', pin: '{}', related_pin: '{}', timing_arc: '{}', when: '{}'",

00210 cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),

00211 arc["related_pin"].get<std::string>(), timing_arc_name, arc["when"].get<std::string>());

00212 } else {

00213 logger_->debug("Checking cell: '{}', pin: '{}', related_pin: '{}', timing_arc: '{}'",

00214 cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),

00215 arc["related_pin"].get<std::string>(), timing_arc_name);

00216 }

00217 bool is_monotonic = true; // Assume the values are monotonic initially

00218 if (arc.contains(timing_arc_name) && arc[timing_arc_name].contains("values")) {

00219 std::vector<std::vector<double>> value_matrix;

00220 // Generate a matrix of values from the JSON array

00221 for (const auto &row_val : arc[timing_arc_name]["values"]) {

00222 std::vector<double> row_data;

00223 // Check if the value is an array

00224 if (!row_val.is_array()) {

00225 logger_->error("Invalid format: '{}' values should be an array of arrays in cell '{}', pin "

00226 "'{}', related_pin '{}'",

00227 timing_arc_name, cell["cell_name"].get<std::string>(),

00228 pin["pin_name"].get<std::string>(), arc["related_pin"].get<std::string>());

00229 return false;

00230 }

00231 // Check for non-numeric values

00232 for (const auto &val : row_val) {

00233 if (val.is_number()) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 193

00234 row_data.push_back(val.get<double>());

00235 } else {

00236 logger_->warn("Non-numeric value found in '{}'.values, skipping value: {} in cell '{}', "

00237 "pin '{}', related_pin '{}'",

00238 timing_arc_name, val.dump(), cell["cell_name"].get<std::string>(),

00239 pin["pin_name"].get<std::string>(), arc["related_pin"].get<std::string>());

00240 }

00241 }

00242 value_matrix.push_back(row_data);

00243 }

00244 // Check the matrix for monotonicity

00245 if (!value_matrix.empty() && !value_matrix[0].empty()) {

00246 // Check the monotonic incrementality of rows (by output load capacitance, index 2)

00247 for (size_t i = 0; i < value_matrix.size(); ++i) {

00248 for (size_t j = 1; j < value_matrix[i].size(); ++j) {

00249 if ((value_matrix[i][j] < value_matrix[i][j - 1] &&

00250 pin["pin_name"] != arc["related_pin"]) ||

00251 (value_matrix[i][j] == 0 && value_matrix[i][j - 1] == 0)) {

00252 // If contains "when" key, log the when value

00253 if (arc.contains("when") && !arc["when"].get<std::string>().empty()) {

00254 logger_->warn("Non-monotonic (by load) '{}' values: ({}, {}) {} < ({}, {}) {} "

00255 "for Cell: {} Pin: {}->{} when: \"{}\"",
00256 timing_arc_name, i, j, value_matrix[i][j], i, j - 1,

00257 value_matrix[i][j - 1], cell["cell_name"].get<std::string>(),

00258 arc["related_pin"].get<std::string>(),

00259 pin["pin_name"].get<std::string>(), arc["when"].get<std::string>());

00260 } else {

00261 logger_->warn("Non-monotonic (by load) '{}' values: ({}, {}) {} < ({}, {}) {} "

00262 "for Cell: {} Pin: {}->{}",

00263 timing_arc_name, i, j, value_matrix[i][j], i, j - 1,

00264 value_matrix[i][j - 1], cell["cell_name"].get<std::string>(),

00265 arc["related_pin"].get<std::string>(),

00266 pin["pin_name"].get<std::string>());

00267 }

00268 is_monotonic = false;

00269 }

00270 }

00271 }

00272 if (is_slew) {

00273 // Check the monotonic incrementality of columns (by input slew, index 1)

00274 for (size_t j = 0; j < value_matrix[0].size(); ++j) {

00275 for (size_t i = 1; i < value_matrix.size(); ++i) {

00276 if ((value_matrix[i][j] < value_matrix[i - 1][j] &&

00277 pin["pin_name"] != arc["related_pin"]) ||

00278 (value_matrix[i][j] == 0 && value_matrix[i - 1][j] == 0)) {

00279 // If contains "when" key, log the when value

00280 if (arc.contains("when") && !arc["when"].get<std::string>().empty()) {

00281 logger_->warn("Non-monotonic (by slew) '{}' values: ({}, {}) {} < ({}, {}) {} "

00282 "for Cell: {} Pin: {}->{} when: \"{}\"",
00283 timing_arc_name, i, j, value_matrix[i][j], i - 1, j,

00284 value_matrix[i - 1][j], cell["cell_name"].get<std::string>(),

00285 arc["related_pin"].get<std::string>(),

00286 pin["pin_name"].get<std::string>(), arc["when"].get<std::string>());

00287 } else {

00288 logger_->warn("Non-monotonic (by slew) '{}' values: ({}, {}) {} < ({}, {}) {} "

00289 "for Cell: {} Pin: {}->{}",

00290 timing_arc_name, i, j, value_matrix[i][j], i - 1, j,

00291 value_matrix[i - 1][j], cell["cell_name"].get<std::string>(),

00292 arc["related_pin"].get<std::string>(),

00293 pin["pin_name"].get<std::string>());

00294 }

00295 is_monotonic = false;

00296 }

00297 }

00298 }

00299 }

00300 } else {

00301 logger_->warn(

00302 "Empty or invalid 'values' array found for cell: '{}', pin: '{}', related_pin: '{}', "

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

194 File Documentation

00303 "timing_arc: '{}'",

00304 cell["cell_name"].get<std::string>(), pin["pin_name"].get<std::string>(),

00305 arc["related_pin"].get<std::string>(), timing_arc_name);

00306 }

00307 }

00308 return is_monotonic;

00309 }

00310

00331 void LibFile::mono(const bool is_slew) {

00332 /*

00333 * Use this command to check the following data in the current library to ensure

00334 * the tables are monotonically increasing with respect to output load:

00335 * cell_rise retaining_rise

00336 * cell_fall retaining_fall

00337 * rise_transition retain_rise_slew

00338 * fall_transition retain_fall_slew

00339 * mpw

00340 */

00341 logger_->info("Monotonicity check of '{}' starting ...", filename_);

00342

00343 if (!std::filesystem::exists(jsonname_)) {

00344 logger_->info("JSON file not found. Parsing Liberty file first.");

00345 this->parse();

00346 this->writeJsonToFile();

00347 } else {

00348 // Read the JSON file into json object

00349 std::ifstream in(jsonname_);

00350 if (!in.is_open()) {

00351 logger_->error("Could not open file '{}' for reading", jsonname_);

00352 return;

00353 }

00354 try {

00355 lib_json_ = json::parse(in);

00356 } catch (const json::parse_error &e) {

00357 logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());

00358 in.close();

00359 return;

00360 }

00361 in.close();

00362 }

00363

00364 std::map<std::string, bool> cell_monotonicity_status; // Track pass/fail status for each cell

00365 std::vector<std::string> failed_cells; // List of failed cell names

00366 int total_cells = 0;

00367 int passed_cells = 0;

00368

00369 // Check the monotonicity of delay values

00370 // The index 1 (time values) must be monotonically increasing and >= 0

00371 for (const auto &cell : lib_json_["cells"]) {

00372 total_cells++;

00373 bool cell_is_monotonic = true; // Assume cell is monotonic initially

00374 std::string cell_name = cell["cell_name"].get<std::string>();

00375 cell_monotonicity_status[cell_name] =

00376 true; // Initialize to pass, will be set to false if any check fails

00377

00378 if (cell.contains("output_pins")) {

00379 for (const auto &pin : cell["output_pins"]) {

00380 if (pin.contains("timing_arcs")) {

00381 for (const auto &arc : pin["timing_arcs"]) {

00382 // Check 4 timing arc names and accumulate monotonicity status

00383 for (const auto &name :

00384 {"cell_rise", "cell_fall", "rise_transition", "fall_transition"}) {

00385 if (!checkTimingArcMonotonicity(cell, pin, arc, name, is_slew)) {

00386 cell_is_monotonic = false;

00387 }

00388 }

00389 }

00390 }

00391 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 195

00392 }

00393 if (cell.contains("input_pins")) {

00394 for (const auto &pin : cell["input_pins"]) {

00395 if (!pin.contains("clock")) {

00396 continue; // Skip non-clock pins

00397 }

00398 // logger_->debug("Clock pin: {}", pin["pin_name"].get<std::string>());

00399 if (pin.contains("timing_arcs")) {

00400 for (const auto &arc : pin["timing_arcs"]) {

00401 if (arc.contains("timing_type")) {

00402 // logger_->debug("Timing type: {}", arc["timing_type"].get<std::string>());

00403 if (arc["timing_type"].get<std::string>() == "min_pulse_width") {

00404 for (const auto &name : {"rise_constraint", "fall_constraint"}) {

00405 if (!checkTimingArcMonotonicity(cell, pin, arc, name, is_slew)) {

00406 cell_is_monotonic = false;

00407 }

00408 }

00409 }

00410 }

00411 }

00412 }

00413 }

00414 }

00415 // Update cell status based on all checks

00416 cell_monotonicity_status[cell_name] = cell_is_monotonic;

00417 if (cell_is_monotonic) {

00418 passed_cells++;

00419 } else {

00420 failed_cells.push_back(cell_name);

00421 }

00422 }

00423 logger_->info("Monotonicity check of '{}' completed.", filename_);

00424

00425 // Output summary statistics

00426 logger_->info("validate_monotonicity : {} out of {} cells passed", passed_cells, total_cells);

00427 logger_->info("validate_monotonicity : {} out of {} cells failed", total_cells - passed_cells,

00428 total_cells);

00429 if (!failed_cells.empty()) {

00430 std::stringstream failed_cells_ss;

00431 for (size_t i = 0; i < failed_cells.size(); ++i) {

00432 failed_cells_ss << failed_cells[i];

00433 if (i < failed_cells.size() - 1) {

00434 failed_cells_ss << ", "; // Add comma if not the last element

00435 }

00436 }

00437 logger_->info("Failed cell list : {}", failed_cells_ss.str());

00438 }

00439 }

00440

00460 void LibFile::supercell(const int chain_length, const std::vector<std::string> &cell_names) {

00461 /*

00462 * Supercells are named as follows:

00463 * <cellname>__X<chain_length>__<input_pin>__<output_pin>

00464 */

00465 logger_->info("Creating supercells for '{}'", filename_);

00466

00467 if (!std::filesystem::exists(jsonname_)) {

00468 logger_->info("JSON file not found. Parsing Liberty file first.");

00469 this->parse();

00470 this->writeJsonToFile();

00471 } else {

00472 // Read the JSON file into json object

00473 std::ifstream in(jsonname_);

00474 if (!in.is_open()) {

00475 logger_->error("Could not open file '{}' for reading", jsonname_);

00476 return;

00477 }

00478 try {

00479 lib_json_ = json::parse(in);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

196 File Documentation

00480 } catch (const json::parse_error &e) {

00481 logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());

00482 in.close();

00483 return;

00484 }

00485 in.close();

00486 }

00487

00488 // write to .map file

00489 std::ofstream out(basename_ + ".map");

00490 if (!out.is_open()) {

00491 logger_->error("Could not open file '{}' for writing", basename_ + ".map");

00492 return;

00493 }

00494 // if celll_names is empty, create supercells for all cells

00495 // else create supercells for only the specified cells

00496

00497 // Check if we're processing specific cells or all cells

00498 bool process_all_cells = cell_names.empty();

00499

00500 if (process_all_cells) {

00501 logger_->info("Creating supercells for ALL cells in '{}'", filename_);

00502 } else {

00503 logger_->info("Creating supercells for {} specified cells in '{}'", cell_names.size(),

00504 filename_);

00505 }

00506

00507 // Create a set for faster lookups if we have specific cell names

00508 std::unordered_set<std::string> cell_set;

00509 std::unordered_set<std::string> found_cells;

00510 if (!process_all_cells) {

00511 cell_set.insert(cell_names.begin(), cell_names.end());

00512 }

00513

00514 for (const auto &cell : lib_json_["cells"]) {

00515 bool is_sequential = false;

00516 std::string cell_name = cell["cell_name"].get<std::string>();

00517

00518 // Skip cells not in the specified list

00519 if (!process_all_cells && cell_set.find(cell_name) == cell_set.end()) {

00520 continue;

00521 }

00522

00523 // Mark this cell as found

00524 if (!process_all_cells) {

00525 found_cells.insert(cell_name);

00526 }

00527

00528 logger_->debug("Creating supercells for cell: '{}'", cell_name);

00529

00530 std::vector<std::string> output_pins;

00531 std::vector<std::string> input_pins;

00532 // Extract input and output pins

00533 if (cell.contains("output_pins")) {

00534 for (const auto &pin : cell["output_pins"]) {

00535 output_pins.push_back(pin["pin_name"].get<std::string>());

00536 }

00537 }

00538 if (cell.contains("input_pins")) {

00539 for (const auto &pin : cell["input_pins"]) {

00540 if (pin.contains("clock")) {

00541 is_sequential = true;

00542 // clock pin not use for supercell

00543 continue;

00544 }

00545 input_pins.push_back(pin["pin_name"].get<std::string>());

00546 }

00547 }

00548

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 197

00549 // create supercells for all combinations of input and output pins

00550 for (const auto &output_pin : output_pins) {

00551 for (const auto &input_pin : input_pins) {

00552 if (is_sequential) {

00553 const int chain_len = 1;

00554 std::string supercell_name =

00555 cell_name + "__X" + std::to_string(chain_len) + "__" + input_pin + "__" + output_pin;

00556 out << cell_name << " " << supercell_name << std::endl;

00557 } else {

00558 std::string supercell_name = cell_name + "__X" + std::to_string(chain_length) + "__" +

00559 input_pin + "__" + output_pin;

00560 out << cell_name << " " << supercell_name << std::endl;

00561 }

00562 }

00563 }

00564 }

00565

00566 // Check for cells that were specified but not found

00567 if (!process_all_cells) {

00568 std::vector<std::string> not_found_cells;

00569 for (const auto &requested_cell : cell_names) {

00570 if (found_cells.find(requested_cell) == found_cells.end()) {

00571 not_found_cells.push_back(requested_cell);

00572 }

00573 }

00574

00575 // Output warning for cells that weren't found

00576 if (!not_found_cells.empty()) {

00577 std::string missing_cells = not_found_cells[0];

00578 for (size_t i = 1; i < not_found_cells.size(); ++i) {

00579 missing_cells += ", " + not_found_cells[i];

00580 }

00581 logger_->warn("{} specified cell{} not found in the library: {}", not_found_cells.size(),

00582 not_found_cells.size() > 1 ? "s were" : " was", missing_cells);

00583 }

00584 }

00585

00586 out.close();

00587 logger_->info("Supercell creation complete in '{}'", basename_ + ".map");

00588 }

00589

00614 void LibFile::verilog(const int chain_length, const std::vector<std::string> &cell_names) {

00615 logger_->info("Creating Verilog for '{}'", filename_);

00616

00617 this->supercell(chain_length, cell_names);

00618

00619 // Create a temporary file for individual modules

00620 std::string temp_file = basename_ + "_temp.v";

00621 std::ofstream out(temp_file);

00622 if (!out.is_open()) {

00623 logger_->error("Could not open temp file '{}' for writing", temp_file);

00624 return;

00625 }

00626

00627 // Read the .map file into a vector to preserve all entries and their order

00628 std::vector<std::pair<std::string, std::string>> supercell_entries;

00629 std::ifstream in(basename_ + ".map");

00630 if (!in.is_open()) {

00631 logger_->error("Could not open file '{}' for reading", basename_ + ".map");

00632 return;

00633 }

00634

00635 std::string line;

00636 while (std::getline(in, line)) {

00637 std::istringstream iss(line);

00638 std::string cell_name, supercell_name;

00639 if (!(iss >> cell_name >> supercell_name)) {

00640 logger_->warn("Invalid line format in map file: '{}'", line);

00641 continue;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

198 File Documentation

00642 }

00643 supercell_entries.push_back({cell_name, supercell_name});

00644 }

00645 in.close();

00646 logger_->info("Read {} supercells from '{}'", supercell_entries.size(), basename_ + ".map");

00647

00648 // Store module information for top-level creation

00649 std::vector<std::string> module_names;

00650 std::map<std::string, std::vector<std::string>> module_inputs;

00651 std::map<std::string, std::vector<std::string>> module_outputs;

00652

00653 // Generate verilog module for each supercell

00654 for (const auto &supercell_entry : supercell_entries) {

00655 // Check if the cell is sequential

00656 bool is_sequential = false;

00657 // Count the number of instances will be created in verilog

00658 int instance_count = 0;

00659 // Get original cell name from pair

00660 const std::string &cell_name = supercell_entry.first;

00661 // Get supercell name(as well as module name) from pair

00662 const std::string &module_name = supercell_entry.second;

00663

00664 // Store module name for top-level creation

00665 module_names.push_back(module_name);

00666

00667 logger_->info("Creating Module: '{}' from Cell '{}", module_name, cell_name);

00668

00669 // Get the cell JSON object

00670 json cell_json;

00671 for (const auto &cell : lib_json_["cells"]) {

00672 if (cell["cell_name"].get<std::string>() == cell_name) {

00673 cell_json = cell;

00674 break;

00675 }

00676 }

00677

00678 // Get input/output pins from the cell JSON object

00679 std::vector<std::string> input_pins;

00680 std::vector<std::string> output_pins;

00681 std::stringstream input_pins_ss;

00682 std::stringstream output_pins_ss;

00683 if (cell_json.contains("input_pins")) {

00684 for (const auto &pin : cell_json["input_pins"]) {

00685 if (pin.contains("clock")) {

00686 is_sequential = true;

00687 }

00688 std::string pin_name = pin["pin_name"].get<std::string>();

00689 input_pins.push_back(pin_name);

00690 input_pins_ss << pin_name << ", ";

00691

00692 // Store input pin name for top-level creation

00693 module_inputs[module_name].push_back(pin_name);

00694 }

00695 }

00696 if (cell_json.contains("output_pins")) {

00697 for (const auto &pin : cell_json["output_pins"]) {

00698 std::string pin_name = pin["pin_name"].get<std::string>();

00699 output_pins.push_back(pin_name);

00700 output_pins_ss << pin_name << ", ";

00701

00702 // Store output pin name for top-level creation

00703 module_outputs[module_name].push_back(pin_name);

00704 }

00705 }

00706 logger_->debug("Input pins set: {}", input_pins_ss.str());

00707 logger_->debug("Output pins set: {}", output_pins_ss.str());

00708

00709 // Sequential cells will have only one instance

00710 // Combinational cells will have instances equal to chain length

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 199

00711 if (is_sequential) {

00712 instance_count = 1;

00713 } else {

00714 instance_count = chain_length;

00715 }

00716

00717 // Create ANSI port list

00718 std::string port_list_text = "(";

00719 // Add input ports

00720 bool isFirstPort = true;

00721 for (const auto &input_pin : input_pins) {

00722 if (!isFirstPort) {

00723 port_list_text += ", ";

00724 }

00725 port_list_text += "input " + input_pin;

00726 isFirstPort = false;

00727 }

00728 // Add output ports

00729 for (const auto &output_pin : output_pins) {

00730 if (!isFirstPort) {

00731 port_list_text += ", ";

00732 }

00733 port_list_text += "output " + output_pin;

00734 isFirstPort = false;

00735 }

00736 port_list_text += ")";

00737 logger_->debug("ANSI Port list: {}", port_list_text);

00738

00739 // Creat full module header text

00740 std::string fullModuleText = "module " + module_name + port_list_text + ";\nendmodule";
00741 logger_->debug("Full module text: {}", fullModuleText);

00742

00743 // Generate the syntax tree for the module using slang library

00744 auto tree = slang::syntax::SyntaxTree::fromText(fullModuleText);

00745 if (tree) {

00746 // Add ports to the syntax tree

00747 ModuleRewriter rewriter(input_pins, output_pins, supercell_entry, instance_count, logger_);

00748

00749 tree = rewriter.transform(tree);

00750 // Revisit the syntax tree to check architecture

00751 // rewriter.visit(tree->root());

00752

00753 // Output the transformed syntax tree

00754 out << "`timescale 1ns/10ps" << std::endl;

00755 out << slang::syntax::SyntaxPrinter::printFile(*tree) << std::endl << std::endl;

00756 } else {

00757 logger_->error("Failed to create syntax tree for module '{}'", module_name);

00758 continue;

00759 }

00760 }

00761

00762 out.close();

00763

00764 // Create the top-level module

00765 std::ofstream final_out(basename_ + ".v");

00766 if (!final_out.is_open()) {

00767 logger_->error("Could not open file '{}' for writing", basename_ + ".v");

00768 return;

00769 }

00770

00771 // Collect all port names separately for inputs and outputs

00772 std::vector<std::string> all_input_ports;

00773 std::vector<std::string> all_output_ports;

00774 std::stringstream top_instances;

00775

00776 // First pass: collect all port names

00777 for (const auto &module_name : module_names) {

00778 // Collect input port names

00779 for (const auto &pin : module_inputs[module_name]) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

200 File Documentation

00780 all_input_ports.push_back(module_name + "__" + pin);

00781 }

00782

00783 // Collect output port names

00784 for (const auto &pin : module_outputs[module_name]) {

00785 all_output_ports.push_back(module_name + "__" + pin);

00786 }

00787

00788 // Create instance

00789 std::string instance_name = "I_" + module_name.substr(0, module_name.find("__X"));

00790 for (size_t i = module_name.find("__X") + 3; i < module_name.length(); i++) {

00791 if (module_name[i] == '_' && module_name[i + 1] == '_') {

00792 instance_name += "__" + module_name.substr(i + 2);

00793 break;

00794 }

00795 }

00796

00797 // Generate port connections for this instance

00798 std::stringstream instance_ports;

00799 for (const auto &pin : module_inputs[module_name]) {

00800 instance_ports << "." << pin << "(" << module_name << "__" << pin << "), ";

00801 }

00802 for (const auto &pin : module_outputs[module_name]) {

00803 instance_ports << "." << pin << "(" << module_name << "__" << pin << "), ";

00804 }

00805

00806 // Remove last comma and space

00807 std::string instance_ports_str = instance_ports.str();

00808 if (!instance_ports_str.empty()) {

00809 instance_ports_str = instance_ports_str.substr(0, instance_ports_str.length() - 2);

00810 }

00811

00812 top_instances << " " << module_name << " " << instance_name << " (" << instance_ports_str

00813 << ");\n";
00814 }

00815

00816 // Now generate the port list with all inputs first, then all outputs

00817 std::stringstream top_ports;

00818

00819 // Add all input ports first

00820 for (size_t i = 0; i < all_input_ports.size(); ++i) {

00821 top_ports << all_input_ports[i];

00822 if (i < all_input_ports.size() - 1 || !all_output_ports.empty()) {

00823 top_ports << ", ";

00824 }

00825 }

00826

00827 // Then add all output ports

00828 for (size_t i = 0; i < all_output_ports.size(); ++i) {

00829 top_ports << all_output_ports[i];

00830 if (i < all_output_ports.size() - 1) {

00831 top_ports << ", ";

00832 }

00833 }

00834

00835 // Generate input and output declarations

00836 std::stringstream top_inputs;

00837 std::stringstream top_outputs;

00838

00839 // Generate input declarations

00840 for (const auto &port : all_input_ports) {

00841 top_inputs << " input " << port << ";\n";
00842 }

00843

00844 // Generate output declarations

00845 for (const auto &port : all_output_ports) {

00846 top_outputs << " output " << port << ";\n";
00847 }

00848

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 201

00849 // Write the top module

00850 final_out << "`timescale 1ns/10ps" << std::endl;

00851 final_out << "module validate_top (" << top_ports.str() << ");" << std::endl;

00852 final_out << std::endl; // Add newline before port declarations

00853 final_out << top_inputs.str();

00854 final_out << top_outputs.str();

00855 final_out << std::endl;

00856 final_out << top_instances.str();

00857 final_out << "endmodule" << std::endl << std::endl;

00858

00859 // Append the module definitions from the temporary file

00860 std::ifstream temp_in(temp_file);

00861 if (temp_in.is_open()) {

00862 final_out << temp_in.rdbuf();

00863 temp_in.close();

00864 } else {

00865 logger_->error("Could not open temp file '{}' for reading", temp_file);

00866 }

00867

00868 final_out.close();

00869

00870 // Remove temporary file

00871 // if (std::filesystem::exists(temp_file)) {

00872 // std::filesystem::remove(temp_file);

00873 // }

00874

00875 logger_->info("Verilog creation complete in '{}'", basename_ + ".v");

00876 }

00877

00889 std::vector<std::string> LibFile::splitString(const std::string &s) {

00890 std::vector<std::string> tokens;

00891 std::stringstream ss(s);

00892 std::string token;

00893 while (ss >> token) {

00894 tokens.push_back(token);

00895 }

00896 return tokens;

00897 }

00898

00931 void LibFile::generateRCLines(std::ofstream &outFile, const std::string &netName, int instanceIndex,

00932 bool isFinalStage) {

00933 // --- Default RC Values (as observed in the target SPICE) ---

00934 const double R1_INTERMEDIATE = 0.01;

00935 const double C1_INTERMEDIATE = 5.3e-16;

00936 const double R2_INTERMEDIATE = 0.01;

00937 const double R1_FINAL = 1e-2;

00938 const double C1_FINAL = 1e-18;

00939 const std::string CAP_GROUND = "COREGND1"; // Assumed ground for capacitors

00940

00941 std::string r1Name = "R1_" + std::to_string(instanceIndex);

00942 std::string c1Name = "C1_" + std::to_string(instanceIndex);

00943 std::string r2Name = "R2_" + std::to_string(instanceIndex);

00944 std::string node1 = netName + ":1"; // Intermediate node 1

00945 std::string node2 = netName + ":2"; // Intermediate node 2

00946

00947 // Set precision for scientific notation output

00948 outFile << std::scientific << std::setprecision(1);

00949

00950 if (!isFinalStage) {

00951 // Intermediate RCR structure (R1-C1-R2)

00952 outFile << r1Name << " " << node1 << " " << node2 << " " << R1_INTERMEDIATE << std::endl;

00953 outFile << c1Name << " " << node2 << " " << CAP_GROUND << " " << C1_INTERMEDIATE << std::endl;

00954 outFile << r2Name << " " << node2 << " " << netName << " " << R2_INTERMEDIATE << std::endl;

00955 } else {

00956 // Final RC structure (R1-C1 connected to the instance output node :1)

00957 // Note: The target SPICE connects R1 between node1 and the final port (netName).

00958 outFile << r1Name << " " << node1 << " " << netName << " " << R1_FINAL << std::endl;

00959 outFile << c1Name << " " << node1 << " " << CAP_GROUND << " " << C1_FINAL << std::endl;

00960 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

202 File Documentation

00961 // Reset precision/format to default

00962 outFile << std::defaultfloat << std::setprecision(6);

00963 }

00964

01013 bool LibFile::modifySpiceNetlist(const std::string &v2lvsSpiceFile, // Input is the v2lvs output

01014 const std::string &finalSpiceFile, // Output is the final file

01015 const std::string &targetGlobalLine) {

01016 logger_->info("Post-processing SPICE netlist: {} -> {}", v2lvsSpiceFile, finalSpiceFile);

01017

01018 std::ifstream inFile(v2lvsSpiceFile);

01019 // Write directly to the final output file, overwriting if it exists

01020 std::ofstream outFile(finalSpiceFile, std::ios::trunc);

01021

01022 if (!inFile) {

01023 logger_->error("Could not open input v2lvs SPICE file for modification: {}", v2lvsSpiceFile);

01024 return false;

01025 }

01026 if (!outFile) {

01027 logger_->error("Could not open final output SPICE file for writing: {}", finalSpiceFile);

01028 inFile.close(); // Close input file if output fails

01029 return false;

01030 }

01031

01032 // --- Add Metadata Comments ---

01033 outFile << "** Generated by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;

01034 auto now = std::chrono::system_clock::now();

01035 std::time_t now_time_t = std::chrono::system_clock::to_time_t(now);

01036 // Use localtime_s on Windows, localtime_r on POSIX, or std::localtime (less safe)

01037 // std::tm now_tm;

01038 // localtime_s(&now_tm, &now_time_t); // Example for Windows

01039 std::tm *now_tm_ptr = std::localtime(&now_time_t); // Standard C++, potentially less thread-safe

01040 if (now_tm_ptr) {

01041 outFile << ". On: " << std::put_time(now_tm_ptr, "%c %Z") << " **\n" << std::endl;

01042 } else {

01043 outFile << ". Timestamp unavailable **\n" << std::endl;

01044 }

01045 // --- End Metadata ---

01046

01047 std::string line;

01048 bool includeFound = false;

01049 bool globalInserted = false;

01050 bool inSubckt = false;

01051 std::string previousInstanceLine = "";

01052 int instanceIndex = 0; // Counter for R/C naming within a subckt

01053

01054 while (std::getline(inFile, line)) {

01055 // Trim leading/trailing whitespace

01056 line.erase(0, line.find_first_not_of(" \t\n\r\f\v"));
01057 line.erase(line.find_last_not_of(" \t\n\r\f\v") + 1);

01058

01059 // Skip empty lines and v2lvs header comments

01060 if (line.empty() || line.find("$ Spice netlist generated by v2lvs") == 0 ||

01061 line.find("$ v2") == 0 || // Catch version line too

01062 line.find("*.BUSDELIMITER") == 0) {

01063 continue; // Skip these lines entirely

01064 }

01065

01066 // Write other comments directly after processing any pending instance

01067 if (line[0] == '*') {

01068 // Process previous instance before writing comment if needed

01069 if (!previousInstanceLine.empty()) {

01070 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01071 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01072 std::string moduleName = tokens.back();

01073 std::string outputNet = tokens[tokens.size() - 2]; // Assumption

01074 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

01075 tokens[tokens.size() - 2] = outputNet + ":1"; // Modify output pin

01076

01077 // Reconstruct line with correct VDD/VSS order

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 203

01078 for (size_t i = 0; i < tokens.size() - 1; ++i) { // Up to module name

01079 outFile << tokens[i] << " ";

01080 }

01081 outFile << "VDD VSS " << moduleName << std::endl; // Insert VDD VSS before module name

01082

01083 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01084 } else {

01085 logger_->warn("Previous line stored but not recognized as instance: {}",

01086 previousInstanceLine);

01087 outFile << previousInstanceLine << std::endl;

01088 }

01089 previousInstanceLine = ""; // Clear after processing

01090 }

01091 outFile << line << std::endl; // Write the comment line

01092 continue;

01093 }

01094

01095 // Handle .INCLUDE

01096 if (line.find(".INCLUDE") == 0) {

01097 outFile << line << std::endl;

01098 includeFound = true;

01099 continue; // Process next line to insert global

01100 }

01101

01102 // Insert the target global line after .INCLUDE

01103 if (includeFound && !globalInserted) {

01104 outFile << targetGlobalLine << std::endl << std::endl; // Add extra newline for spacing

01105 globalInserted = true;

01106 // Fall through to process the current line

01107 }

01108

01109 // Handle .SUBCKT

01110 if (line.find(".SUBCKT") == 0 || line.find(".subckt") == 0) { // Handle case-insensitivity

01111 if (!previousInstanceLine.empty()) {

01112 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01113 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01114 std::string moduleName = tokens.back();

01115 std::string outputNet = tokens[tokens.size() - 2];

01116 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

01117 tokens[tokens.size() - 2] = outputNet + ":1";

01118

01119 for (size_t i = 0; i < tokens.size() - 1; ++i) {

01120 outFile << tokens[i] << " ";

01121 }

01122 outFile << "VDD VSS " << moduleName << std::endl;

01123

01124 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01125 } else {

01126 logger_->warn("Previous line stored but not recognized as instance: {}",

01127 previousInstanceLine);

01128 outFile << previousInstanceLine << std::endl;

01129 }

01130 previousInstanceLine = "";

01131 }

01132

01133 inSubckt = true;

01134 instanceIndex = 0; // Reset R/C counter for new subcircuit

01135 outFile << line << " VDD VSS" << std::endl; // Add VDD VSS to ports

01136 }

01137 // Handle .ENDS

01138 else if (line.find(".ENDS") == 0 || line.find(".ends") == 0) { // Handle case-insensitivity

01139 inSubckt = false;

01140 // Process the last instance line *before* writing .ENDS

01141 if (!previousInstanceLine.empty()) {

01142 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01143 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01144 std::string moduleName = tokens.back();

01145 std::string outputNet = tokens[tokens.size() - 2];

01146 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

204 File Documentation

01147 tokens[tokens.size() - 2] = outputNet + ":1";

01148

01149 for (size_t i = 0; i < tokens.size() - 1; ++i) {

01150 outFile << tokens[i] << " ";

01151 }

01152 outFile << "VDD VSS " << moduleName << std::endl;

01153

01154 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01155 } else {

01156 logger_->warn("Previous line stored but not recognized as instance: {}",

01157 previousInstanceLine);

01158 outFile << previousInstanceLine << std::endl;

01159 }

01160 previousInstanceLine = ""; // Clear after processing

01161 }

01162 outFile << line << std::endl << std::endl; // Add extra newline after .ENDS

01163 }

01164 // Skip original .GLOBAL lines

01165 else if (line.find(".GLOBAL") == 0 || line.find(".global") == 0) {

01166 continue;

01167 }

01168 // Handle Instance lines

01169 else if (inSubckt && (line[0] == 'X' || line[0] == 'x')) {

01170 if (!previousInstanceLine.empty()) {

01171 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01172 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01173 std::string moduleName = tokens.back();

01174 std::string outputNet = tokens[tokens.size() - 2]; // Assumption

01175 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

01176 tokens[tokens.size() - 2] = outputNet + ":1"; // Modify output pin

01177

01178 // Reconstruct line with correct VDD/VSS order

01179 for (size_t i = 0; i < tokens.size() - 1; ++i) { // Up to module name

01180 outFile << tokens[i] << " ";

01181 }

01182 outFile << "VDD VSS " << moduleName << std::endl; // Insert VDD VSS before module name

01183

01184 this->generateRCLines(outFile, outputNet, instanceIndex - 1,

01185 isFinal); // Use previous index

01186 } else {

01187 logger_->warn("Previous line stored but not recognized as instance: {}",

01188 previousInstanceLine);

01189 outFile << previousInstanceLine << std::endl;

01190 }

01191 }

01192 previousInstanceLine = line;

01193 instanceIndex++;

01194 }

01195 // Handle other lines

01196 else {

01197 if (!previousInstanceLine.empty()) {

01198 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01199 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01200 std::string moduleName = tokens.back();

01201 std::string outputNet = tokens[tokens.size() - 2];

01202 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

01203 tokens[tokens.size() - 2] = outputNet + ":1";

01204

01205 for (size_t i = 0; i < tokens.size() - 1; ++i) {

01206 outFile << tokens[i] << " ";

01207 }

01208 outFile << "VDD VSS " << moduleName << std::endl;

01209

01210 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01211 } else {

01212 logger_->warn("Previous line stored but not recognized as instance: {}",

01213 previousInstanceLine);

01214 outFile << previousInstanceLine << std::endl;

01215 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.32 LibFile.cpp 205

01216 previousInstanceLine = ""; // Clear after processing

01217 }

01218 outFile << line << std::endl;

01219 }

01220 }

01221

01222 // Process the very last instance line

01223 if (!previousInstanceLine.empty()) {

01224 std::vector<std::string> tokens = this->splitString(previousInstanceLine);

01225 if (tokens.size() > 2 && (tokens[0][0] == 'X' || tokens[0][0] == 'x')) {

01226 std::string moduleName = tokens.back();

01227 std::string outputNet = tokens[tokens.size() - 2];

01228 bool isFinal = (outputNet == "CO" || outputNet == "S" || outputNet == "ZN");

01229 tokens[tokens.size() - 2] = outputNet + ":1";

01230

01231 for (size_t i = 0; i < tokens.size() - 1; ++i) {

01232 outFile << tokens[i] << " ";

01233 }

01234 outFile << "VDD VSS " << moduleName << std::endl;

01235

01236 this->generateRCLines(outFile, outputNet, instanceIndex - 1, isFinal);

01237 } else {

01238 logger_->warn("Last stored line not recognized as instance: {}", previousInstanceLine);

01239 outFile << previousInstanceLine << std::endl;

01240 }

01241 }

01242

01243 inFile.close();

01244 outFile.close();

01245

01246 // No renaming needed, we wrote directly to the final file

01247 logger_->info("SPICE netlist post-processing successful for: {}", finalSpiceFile);

01248 return true;

01249 }

01250

01279 void LibFile::spice(const int chain_length, const std::vector<std::string> &cell_names,

01280 const std::string &verilog_lib_file, const std::string &spice_lib_file) {

01281 logger_->info("Creating SPICE for '{}'", filename_);

01282

01283 // 1. Generate the temporary Verilog file first

01284 this->verilog(chain_length, cell_names);

01285

01286 // Define input and output filenames

01287 std::string temp_verilog_file = basename_ + "_temp.v";

01288 std::string v2lvs_output_spice_file = basename_ + ".v2lvs.spi"; // v2lvs output

01289 std::string final_output_spice_file = basename_ + ".spi"; // Final processed output

01290

01291 // Check if temporary Verilog file exists

01292 std::ifstream check_v_in(temp_verilog_file);

01293 if (!check_v_in.is_open()) {

01294 logger_->error("Temporary Verilog file {} not found or could not be opened. Verilog generation "

01295 "might have failed.",

01296 temp_verilog_file);

01297 return;

01298 }

01299 check_v_in.close(); // Close after checking

01300

01301 // 2. Check if V2LVS tool is available

01302 logger_->debug("Checking for v2lvs tool...");

01303 std::string v2lvs_path_cmd = "which v2lvs";

01304 std::string v2lvs_path_result;

01305 std::array<char, 128> buffer;

01306 std::unique_ptr<FILE, decltype(&pclose)> pipe(popen(v2lvs_path_cmd.c_str(), "r"), pclose);

01307 if (!pipe) {

01308 logger_->error("Failed to run command to find v2lvs: {}", v2lvs_path_cmd);

01309 // Do NOT delete temp_verilog_file here if popen fails

01310 return;

01311 }

01312 while (fgets(buffer.data(), buffer.size(), pipe.get()) != nullptr) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

206 File Documentation

01313 v2lvs_path_result += buffer.data();

01314 }

01315

01316 // Trim potential newline from the result

01317 if (!v2lvs_path_result.empty() && v2lvs_path_result.back() == '\n') {

01318 v2lvs_path_result.pop_back();

01319 }

01320

01321 if (v2lvs_path_result.empty()) {

01322 logger_->error(

01323 "V2LVS tool not found in PATH. Please install Calibre or ensure v2lvs is accessible.");

01324 // Do NOT delete temp_verilog_file

01325 return;

01326 } else {

01327 logger_->info("V2LVS tool found at: {}", v2lvs_path_result);

01328 }

01329

01330 // 3. Construct and Run V2LVS command

01331 logger_->info("Running V2LVS to generate initial SPICE netlist...");

01332 std::string v2lvs_cmd_full = "v2lvs"; // Start with the command name

01333 v2lvs_cmd_full += " -v " + temp_verilog_file; // Input Verilog

01334 v2lvs_cmd_full += " -o " + v2lvs_output_spice_file; // Output SPICE

01335 v2lvs_cmd_full += " -s0 VSS"; // Default ground net, generates .GLOBAL VSS

01336 v2lvs_cmd_full += " -s1 VDD"; // Default power net, generates .GLOBAL VDD

01337 v2lvs_cmd_full += " -i"; // Use positional pins (traditional SPICE)

01338 v2lvs_cmd_full += " -l " + verilog_lib_file; // Verilog library for pin order

01339 v2lvs_cmd_full += " -s " + spice_lib_file; // SPICE library to include

01340

01341 logger_->debug("Executing V2LVS command: {}", v2lvs_cmd_full);

01342 int ret = system(v2lvs_cmd_full.c_str());

01343

01344 // Do NOT delete temp_verilog_file

01345

01346 if (ret != 0) {

01347 logger_->error("V2LVS command failed with exit code: {}. Command: {}", ret, v2lvs_cmd_full);

01348 // Attempt to remove potentially incomplete v2lvs output SPICE file

01349 std::remove(v2lvs_output_spice_file.c_str());

01350 return;

01351 }

01352 logger_->info("V2LVS completed successfully, output at '{}'.", v2lvs_output_spice_file);

01353

01354 // 4. Post-process the generated SPICE file

01355 std::string target_global = ".global VSS GND COREGND1 VDD COREVDD1";

01356

01357 // Call the modification function, reading from .v2lvs.spi and writing to .spi

01358 if (!this->modifySpiceNetlist(v2lvs_output_spice_file, final_output_spice_file, target_global)) {

01359 logger_->error("Failed to post-process the generated SPICE netlist: {}",

01360 v2lvs_output_spice_file);

01361 // Keep both files for debugging if modification fails

01362 return;

01363 }

01364

01365 // 5. Final success message

01366 logger_->info("Intermediate v2lvs output kept in '{}'", v2lvs_output_spice_file);

01367 logger_->info("Temporary Verilog input kept in '{}'", temp_verilog_file);

01368 logger_->info("SPICE generation and post-processing complete. Final output in '{}'",

01369 final_output_spice_file);

01370 }

01371

01392 std::map<std::string, std::string> LibFile::logic(const std::string &cell_name) {

01393 std::map<std::string, std::string> logic_map = {};

01394

01395 logger_->info("Getting output pin logic function for '{}'", filename_);

01396

01397 if (!std::filesystem::exists(jsonname_)) {

01398 logger_->info("JSON file not found. Parsing Liberty file first.");

01399 this->parse();

01400 this->writeJsonToFile();

01401 } else {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 207

01402 // Read the JSON file into json object

01403 std::ifstream in(jsonname_);

01404 if (!in.is_open()) {

01405 logger_->error("Could not open file '{}' for reading", jsonname_);

01406 return logic_map;

01407 }

01408 try {

01409 lib_json_ = json::parse(in);

01410 } catch (const json::parse_error &e) {

01411 logger_->error("JSON parsing error in file '{}': {}", jsonname_, e.what());

01412 in.close();

01413 return logic_map;

01414 }

01415 in.close();

01416 }

01417

01418 // Check if the cell name exists in the JSON object

01419 for (const auto &cell : lib_json_["cells"]) {

01420 if (cell["cell_name"].get<std::string>() == cell_name) {

01421 logger_->debug("Found cell: '{}'", cell_name);

01422

01423 // Tranverse all output pins

01424 if (cell.contains("output_pins")) {

01425 for (const auto &pin : cell["output_pins"]) {

01426 std::string pin_name = pin["pin_name"].get<std::string>();

01427 // Check if the pin has a "timing_arcs" attribute

01428 if (pin.contains("function")) {

01429 std::string function = pin["function"].get<std::string>();

01430 logic_map[pin_name] = function;

01431 logger_->debug("Pin: '{}' Logic Function: '{}'", pin_name, function);

01432 } else {

01433 logger_->warn("Pin: '{}' does not have a 'function' attribute", pin_name);

01434 }

01435 }

01436 }

01437 }

01438 }

01439 if (logic_map.empty()) {

01440 logger_->warn("No logic functions found for cell: '{}'", cell_name);

01441 } else {

01442 logger_->info("Found {} Logic functions for cell: '{}'", logic_map.size(), cell_name);

01443 // Print the logic functions

01444 for (const auto &pair : logic_map) {

01445 logger_->info("Pin -> Logic Function: {} -> {}", pair.first, pair.second);

01446 }

01447 }

01448 return logic_map;

01449 }

7.33 src/LibFileOperations.cpp File Reference

#include "LibFileOperations.hpp"

Include dependency graph for LibFileOperations.cpp:

src/LibFileOperations.cpp

LibFileOperations.hpp

filesystem

iostream thread

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

spdlog/spdlog.h

LibFile.hpp

LibraryComparator.hpp

LogicComparator.hppLogicExtractor.hpp

chrono

fstream

string

unordered_set nlohmann/json.hppIterators.hpp

json_utils.hppverilog_utils.hpp version.h

LibAttribute.hpp LibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.hslang/syntax/SyntaxVisitor.h

tabulate/table.hpp tabulate/markdown_exporter.hpp algorithmcmath iomanip optional regex variant exprtk.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

208 File Documentation

Functions

• void printInfo ()
Sets up and configures the global logger and prints application information.

• void parseLibFile (const std::string &library_path, const std::string log_file_name)
Parses a library file and generates corresponding output.

• void monoCheckLibFile (const std::string &library_path, const std::string log_file_name, bool is←↩

_slew)
Performs monotonicity check on a library file.

• void supercellLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names)
Creates supercell map structures from a Liberty library file.

• void verilogLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names)
Generates Verilog files from a library file for specified cells.

• void spiceLibFile (const std::string &library_path, const std::string &log_file_name, int chain←↩

_length, const std::vector< std::string > &cell_names, const std::string &verilog_lib_file, const
std::string &spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

• void compareLibFiles (const std::string &ref_lib, const std::string &comp_lib, const double reltol,
const double abstol, std::string &report_file_name)

Compares two library files and generates a detailed comparison report.

• void funcLibFile (const std::string &ref_file, const std::string &comp_file, const std::vector< std←↩

::string > &cell_names, std::string &report_file_name)
Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

7.33.1 Function Documentation

7.33.1.1 compareLibFiles()

void compareLibFiles (

const std::string & ref_lib,

const std::string & comp_lib,

const double reltol,

const double abstol,

std::string & report_file_name)

Compares two library files and generates a detailed comparison report.

This function compares a reference library file with another library file, performing validation checks
based on specified tolerance parameters. The comparison results are written to a report file in markdown
or text format.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 209

Parameters

ref_lib Path to the reference library file to use as the baseline
comp_lib Path to the library file to compare against the reference
reltol Relative tolerance for numerical comparisons (must be >= 0.0)
abstol Absolute tolerance for numerical comparisons
report_file_name [in,out] Name of the file to write the comparison report to. If empty, defaults to

[comp_lib_basename].cmp.md. If provided but doesn't end with .txt or .md,
.md will be appended.

Note

The function will log an error and return without comparing if reltol is invalid.

Log files will be created with the naming pattern [library_basename].cmp.log

The function uses the LibraryComparator class to perform the actual comparison.

Definition at line 249 of file LibFileOperations.cpp.

Here is the call graph for this function:

compareLibFiles LibraryComparator::
generateReport

LibraryComparator::
compareCell

LibraryComparator::
comparePin

LibraryComparator::
compareTimingArc

LibraryComparator::
compareLut

Here is the caller graph for this function:

compareLibFilesmain

7.33.1.2 funcLibFile()

void funcLibFile (

const std::string & ref_file,

const std::string & comp_file,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

210 File Documentation

const std::vector< std::string > & cell_names,

std::string & report_file_name)

Performs a functional equivalence check between two files (Liberty or Verilog) for a given set of cells.

This function compares the logic functions of specified cells in two files, which can be either in Liberty
(.lib) or Verilog (.v) format. It extracts the logic functions for each cell from both files, compares them,
and generates a report summarizing the comparison results.

Parameters

ref_file The path to the reference file (Liberty or Verilog).
comp_file The path to the comparison file (Liberty or Verilog).
cell_names A vector of cell names to be checked for functional equivalence.
report_file_name A string to store the name of the report file. If empty, a default name is

generated. If the provided name does not end with ”.txt” or ”.md”, ”.md” is
appended.

The function first checks the file extensions to determine the file format. It then extracts the logic
functions for each specified cell from both files. The logic functions are then compared, and a report
is generated, which includes the comparison results for each cell. The report is written to the specified
report file.

Note

• If no cell names are provided, the function logs an error and returns.

• If the reference or comparison file format is not supported (i.e., not .lib or .v), the function
logs an error and returns.

• The report file is cleared before writing the comparison results.

• The function uses spdlog for logging information, warnings, and errors.

• The function utilizes the LogicComparator class to perform the logic comparison and generate
the report.

• Memory allocated for LibFile objects is managed using raw pointers and must be manually
deallocated to prevent memory leaks.

Definition at line 308 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 211

Here is the call graph for this function:

funcLibFile

LogicComparator::compare
CellLogic

extractLogicFromVerilog

LogicComparator::generate
Report

LogicComparator::logic

LibFile::logic

LogicComparator::compare
SingleExpressionPair

LogicComparator::extract
Variables

LogicComparator::preprocess
Expression

isIdentifier

isOperator

LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

funcLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

212 File Documentation

7.33.1.3 monoCheckLibFile()

void monoCheckLibFile (

const std::string & library_path,

const std::string log_file_name,

bool is_slew)

Performs monotonicity check on a library file.

This function validates the monotonicity of timing data in a library file. It creates a log file to record the
results of the check and handles any exceptions that occur during the process.

Parameters

library_path Path to the library file to check
log_file_name Name of the log file to create (optional). If empty, a default name will be

generated from the library file name
is_slew Flag indicating whether to check input slew monotonicity (true) or output load

monotonicity (false)

Exceptions

The function catches and logs any exceptions but does not rethrow them

Definition at line 81 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 213

Here is the call graph for this function:

monoCheckLibFile LibFile::mono

LibFile::checkTimingArcMonotonicity

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

monoCheckLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

214 File Documentation

7.33.1.4 parseLibFile()

void parseLibFile (

const std::string & library_path,

const std::string log_file_name)

Parses a library file and generates corresponding output.

This function processes the given library file, parsing its contents and generating a JSON output. It also
logs the parsing process to a specified log file or creates a default log file if none is provided.

Parameters

library_path Path to the library file that needs to be parsed
log_file_name Optional name for the log file. If empty, a default name is generated based on the

library filename with ”.parse.log” extension

Exceptions

The function catches and logs any exceptions but doesn't propagate them

Definition at line 49 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 215

Here is the call graph for this function:

parseLibFile

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

parseLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

216 File Documentation

7.33.1.5 printInfo()

void printInfo ()

Sets up and configures the global logger and prints application information.

This function performs the following operations:

1. Creates a console sink for logging with level set to INFO

2. Creates a file sink for logging with level set to TRACE, saving to [APP_NAME].log

3. Configures a logger with both sinks and sets it as the default logger

4. Outputs basic application information:

• Version and build timestamp

• Author information

• Log file location

Note

Uses spdlog library for logging functionality

Depends on APP_NAME, APP_VERSION, BUILD_TIMESTAMP, APP_AUTHOR, and APP←↩

_CONTACT macros

Definition at line 18 of file LibFileOperations.cpp.

Here is the caller graph for this function:

printInfomain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 217

7.33.1.6 spiceLibFile()

void spiceLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names,

const std::string & verilog_lib_file,

const std::string & spice_lib_file)

Generates a SPICE library file from a given library file, applying a specified chain length and cell names.

This function takes a library file path, a log file name, a chain length, a vector of cell names, a Verilog
library file path, and a SPICE library file path as input. It initializes a LibFile object, validates the chain
length, and then calls the spice method of the LibFile object to generate the SPICE library file. It logs
the start and end of the SPICE generation process, as well as any errors that occur.

Parameters

library_path The path to the input library file.
log_file_name The name of the log file. If empty, a default log file name is generated based on

the library file name.
chain_length The chain length to use during SPICE generation. Must be >= 1.
cell_names A vector of cell names to include in the SPICE generation.
verilog_lib_file The path to the Verilog library file.
spice_lib_file The path to the output SPICE library file.

Definition at line 202 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

218 File Documentation

Here is the call graph for this function:

spiceLibFile LibFile::spice

LibFile::modifySpiceNetlist

LibFile::verilog

LibFile::generateRCLines

LibFile::splitString

LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

spiceLibFilemain

7.33.1.7 supercellLibFile()

void supercellLibFile (

const std::string & library_path,

const std::string & log_file_name,

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 219

int chain_length,

const std::vector< std::string > & cell_names)

Creates supercell map structures from a Liberty library file.

This function reads a Liberty file, creates supercell structures based on the specified chain length and
cell names, and logs the process to a file.

Parameters

library_path Path to the Liberty file to process
log_file_name Name of the log file (if empty, defaults to ”[library_name].supercell.log”)
chain_length The length of chains to create (must be >= 1)
cell_names Vector of cell names to process for supercell generation

Exceptions

May pass through exceptions from the LibFile::supercell method

Note

The function validates the chain length and logs all activities including errors that might occur
during processing

Definition at line 116 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

220 File Documentation

Here is the call graph for this function:

supercellLibFile LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

supercellLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.33 src/LibFileOperations.cpp File Reference 221

7.33.1.8 verilogLibFile()

void verilogLibFile (

const std::string & library_path,

const std::string & log_file_name,

int chain_length,

const std::vector< std::string > & cell_names)

Generates Verilog files from a library file for specified cells.

This function processes a library file and generates Verilog representation for the specified cell names
with a given chain length. The operation results are logged to a specified or default log file.

Parameters

library_path Path to the library file to process
log_file_name Name for the log file (if empty, a default name will be generated)
chain_length Number of cells to chain together, must be >= 1
cell_names Vector of cell names to generate Verilog for

Exceptions

Catches any exceptions from the verilog generation process and logs them

Definition at line 157 of file LibFileOperations.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

222 File Documentation

Here is the call graph for this function:

verilogLibFile LibFile::verilog LibFile::supercell

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getName

AttributesIterator
::next

GroupsIterator::get

LibGroup::getGroups

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

LibAttribute::getFloat

LibGroup::getName

LibAttribute::getInt

LibFile::read

generatePinJson

generatePowerJson

generateTimingJson

LibAttribute::getBoolean

generateLutJson

ValuesIterator::end

LibAttribute::getValues

ValuesIterator::next

parseStringToVector

Here is the caller graph for this function:

verilogLibFilemain

7.34 LibFileOperations.cpp

Go to the documentation of this file.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.34 LibFileOperations.cpp 223

00001 #include "LibFileOperations.hpp"

00002

00018 void printInfo() {

00019 // Set Global Logger

00020 auto console_sink = std::make_shared<spdlog::sinks::stdout_color_sink_mt>();

00021 console_sink->set_level(spdlog::level::info);

00022 std::string app_name = APP_NAME;

00023 auto file_sink = std::make_shared<spdlog::sinks::basic_file_sink_mt>(app_name + ".log", true);

00024 file_sink->set_level(spdlog::level::trace);

00025

00026 std::vector<spdlog::sink_ptr> sinks{console_sink, file_sink};

00027 auto logger = std::make_shared<spdlog::logger>(APP_NAME, sinks.begin(), sinks.end());

00028 logger->set_level(spdlog::level::trace);

00029 spdlog::set_default_logger(logger);

00030

00031 spdlog::info("Version {}, Built: {}", APP_VERSION, BUILD_TIMESTAMP);

00032 spdlog::info("Author: {}, Email: {}", APP_AUTHOR, APP_CONTACT);

00033 spdlog::info("Global log file in: '{}'", app_name + ".log");

00034 }

00035

00049 void parseLibFile(const std::string &library_path, const std::string log_file_name) {

00050 std::string logname = log_file_name.empty()

00051 ? std::filesystem::path(library_path).stem().string() + ".parse.log"

00052 : log_file_name;

00053 LibFile libfile(library_path, logname);

00054

00055 libfile.logger_->info("Starting parse for file: '{}' ...", library_path);

00056

00057 try {

00058 libfile.parse();

00059 libfile.writeJsonToFile();

00060 libfile.logger_->info("Successfully parsed file: '{}'", library_path);

00061 } catch (const std::exception &e) {

00062 libfile.logger_->error("Error parsing file '{}': {}", library_path, e.what());

00063 }

00064 }

00065

00081 void monoCheckLibFile(const std::string &library_path, const std::string log_file_name,

00082 bool is_slew) {

00083 std::string logname = log_file_name.empty()

00084 ? std::filesystem::path(library_path).stem().string() + ".mono.log"

00085 : log_file_name;

00086 LibFile libfile(library_path, logname);

00087

00088 libfile.logger_->info("Starting monotonicity check for file: '{}', input slew: {}", library_path,

00089 is_slew);

00090

00091 try {

00092 libfile.mono(is_slew);

00093 libfile.logger_->info("Successfully completed monotonicity check for file: '{}'", library_path);

00094 } catch (const std::exception &e) {

00095 libfile.logger_->error("Error during monotonicity check for file '{}': {}", library_path,

00096 e.what());

00097 }

00098 }

00099

00116 void supercellLibFile(const std::string &library_path, const std::string &log_file_name,

00117 int chain_length, const std::vector<std::string> &cell_names) {

00118 std::string logname = log_file_name.empty()

00119 ? std::filesystem::path(library_path).stem().string() + ".supercell.log"

00120 : log_file_name;

00121 LibFile libfile(library_path, logname);

00122

00123 // Check chain length validity

00124 if (chain_length < 1) {

00125 libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);

00126 return;

00127 }

00128 std::stringstream ss;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

224 File Documentation

00129 for (const auto &cell : cell_names) {

00130 ss << cell << ", ";

00131 }

00132 libfile.logger_->info("Starting supercell generation for file: '{}', chain length: {}, cells: {}",

00133 library_path, chain_length, ss.str());

00134 try {

00135 libfile.supercell(chain_length, cell_names);

00136 libfile.logger_->info("Successfully generated supercells for file: '{}'", library_path);

00137 } catch (const std::exception &e) {

00138 libfile.logger_->error("Error during supercell generation for file '{}': {}", library_path,

00139 e.what());

00140 }

00141 }

00142

00157 void verilogLibFile(const std::string &library_path, const std::string &log_file_name,

00158 int chain_length, const std::vector<std::string> &cell_names) {

00159 std::string logname = log_file_name.empty()

00160 ? std::filesystem::path(library_path).stem().string() + ".verilog.log"

00161 : log_file_name;

00162 LibFile libfile(library_path, logname);

00163

00164 // Check chain length validity

00165 if (chain_length < 1) {

00166 libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);

00167 return;

00168 }

00169 std::stringstream ss;

00170 for (const auto &cell : cell_names) {

00171 ss << cell << ", ";

00172 }

00173 libfile.logger_->info("Starting Verilog generation for file: '{}', chain length: {}, cells: {}",

00174 library_path, chain_length, ss.str());

00175 try {

00176 libfile.verilog(chain_length, cell_names);

00177 libfile.logger_->info("Successfully generated Verilog for file: '{}'", library_path);

00178 } catch (const std::exception &e) {

00179 libfile.logger_->error("Error during Verilog generation for file '{}': {}", library_path,

00180 e.what());

00181 }

00182 }

00183

00202 void spiceLibFile(const std::string &library_path, const std::string &log_file_name,

00203 int chain_length, const std::vector<std::string> &cell_names,

00204 const std::string &verilog_lib_file, const std::string &spice_lib_file) {

00205 std::string logname = log_file_name.empty()

00206 ? std::filesystem::path(library_path).stem().string() + ".spice.log"

00207 : log_file_name;

00208 LibFile libfile(library_path, logname);

00209

00210 // Check chain length validity

00211 if (chain_length < 1) {

00212 libfile.logger_->error("Invalid chain length: {}. Chain length must be >= 1.", chain_length);

00213 return;

00214 }

00215 std::stringstream ss;

00216 for (const auto &cell : cell_names) {

00217 ss << cell << ", ";

00218 }

00219 libfile.logger_->info("Starting SPICE generation for file: '{}', chain length: {}, cells: {}",

00220 library_path, chain_length, ss.str());

00221 try {

00222 libfile.spice(chain_length, cell_names, verilog_lib_file, spice_lib_file);

00223 libfile.logger_->info("Successfully generated SPICE for file: '{}'", library_path);

00224 } catch (const std::exception &e) {

00225 libfile.logger_->error("Error during SPICE generation for file '{}': {}", library_path,

00226 e.what());

00227 }

00228 }

00229

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.34 LibFileOperations.cpp 225

00249 void compareLibFiles(const std::string &ref_lib, const std::string &comp_lib, const double reltol,

00250 const double abstol, std::string &report_file_name) {

00251 std::string ref_logname = std::filesystem::path(ref_lib).stem().string() + ".cmp.log";

00252 std::string comp_logname = std::filesystem::path(comp_lib).stem().string() + ".cmp.log";

00253 LibFile ref_libfile(ref_lib, ref_logname), comp_libfile(comp_lib, comp_logname);

00254

00255 // Check relative tolerance validity

00256 if (reltol < 0.0) {

00257 spdlog::error("Invalid relative tolerance: {}. Relative tolerance must be >= 0.0.", reltol);

00258 return;

00259 }

00260

00261 // Check the report file name

00262 if (report_file_name.empty()) {

00263 report_file_name = comp_libfile.basename_ + ".cmp.md";

00264 } else if (std::filesystem::path(report_file_name).extension() != ".txt" &&

00265 std::filesystem::path(report_file_name).extension() != ".md") {

00266 // report file name not end in .txt or .md, warn user and append .md

00267 report_file_name = report_file_name + ".md";

00268 spdlog::warn("Report file name does not end in .txt or .md. Report will be written to '{}'",

00269 report_file_name);

00270 }

00271

00272 LibraryComparator comparator(ref_libfile, comp_libfile, reltol, abstol);

00273 comparator.generateReport(report_file_name);

00274 spdlog::info("Comparison completed. Report written to: '{}'", report_file_name);

00275 }

00276

00308 void funcLibFile(const std::string &ref_file, const std::string &comp_file,

00309 const std::vector<std::string> &cell_names, std::string &report_file_name) {

00310 // Check if the files are Liberty or Verilog

00311 std::string ref_ext = std::filesystem::path(ref_file).extension();

00312 std::string comp_ext = std::filesystem::path(comp_file).extension();

00313 std::string ref_logname = std::filesystem::path(ref_file).stem().string() + ".cmp.log";

00314 std::string comp_logname = std::filesystem::path(comp_file).stem().string() + ".cmp.log";

00315

00316 // Pre cell names check

00317 if (cell_names.empty()) {

00318 spdlog::error("No cell names provided for functional equivalence check.");

00319 return;

00320 }

00321

00322 // Check the report file name

00323 if (report_file_name.empty()) {

00324 report_file_name = std::filesystem::path(comp_file).stem().string() + ".logic.cmp.md";

00325 } else if (std::filesystem::path(report_file_name).extension() != ".txt" &&

00326 std::filesystem::path(report_file_name).extension() != ".md") {

00327 // report file name not end in .txt or .md, warn user and append .md

00328 report_file_name = report_file_name + ".md";

00329 spdlog::warn("Report file name does not end in .txt or .md. Report will be written to '{}'",

00330 report_file_name);

00331 }

00332

00333 // Clear the report file

00334 std::ofstream report_file(report_file_name);

00335 if (!report_file.is_open()) {

00336 spdlog::error("Failed to open report file: '{}'", report_file_name);

00337 return;

00338 }

00339 report_file.close();

00340 spdlog::info("Report file cleared: '{}'", report_file_name);

00341

00342 // Declare LibFile objects as pointers, initialized to nullptr

00343 LibFile *ref_libfile = nullptr;

00344 LibFile *comp_libfile = nullptr;

00345

00346 // Check the reference file extension

00347 if (ref_ext == ".v") {

00348 spdlog::info("Reference file in Verilog format.");

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

226 File Documentation

00349 } else if (ref_ext == ".lib") {

00350 spdlog::info("Reference file in Liberty format.");

00351 ref_libfile = new LibFile(ref_file, ref_logname);

00352 } else {

00353 spdlog::error("Unsupported reference file format: '{}'", ref_ext);

00354 return;

00355 }

00356 // Check the comparison file extension

00357 if (comp_ext == ".v") {

00358 spdlog::info("Comparison file in Verilog format.");

00359 } else if (comp_ext == ".lib") {

00360 spdlog::info("Comparison file in Liberty format.");

00361 comp_libfile = new LibFile(comp_file, comp_logname);

00362 } else {

00363 spdlog::error("Unsupported comparison file format: '{}'", comp_ext);

00364 return;

00365 }

00366

00367 // Tranverse the cell names and check functional equivalence

00368 for (const auto &cell : cell_names) {

00369 spdlog::info("Checking functional equivalence for cell: '{}'", cell);

00370 std::map<std::string, std::string> ref_outpin_map;

00371 std::map<std::string, std::string> comp_outpin_map;

00372

00373 if (ref_ext == ".v") {

00374 ref_outpin_map = extractLogicFromVerilog(ref_file, cell);

00375 } else if (ref_ext == ".lib") {

00376 ref_outpin_map = ref_libfile->logic(cell);

00377 }

00378

00379 if (comp_ext == ".v") {

00380 // getAST(comp_file, cell);

00381 // extractAndPrintNetlistInfo(comp_file, cell);

00382 comp_outpin_map = extractLogicFromVerilog(comp_file, cell);

00383 } else if (comp_ext == ".lib") {

00384 comp_outpin_map = comp_libfile->logic(cell);

00385 }

00386

00387 spdlog::info("Logic function expressions collected for cell: '{}'", cell);

00388 spdlog::info("Starting logic comparison ...");

00389

00390 LogicComparator comparator(ref_outpin_map, comp_outpin_map, cell);

00391 // Easter egg

00392 if (cell == "easteregg") {

00393 spdlog::info("Easter egg� found! � Running ExprTk Eample 07...");

00394 comparator.logic();

00395 return;

00396 }

00397

00398 // // Test for preprocessing

00399 // std::string ref_expr;

00400 // std::string comp_expr;

00401 // for (const auto &pin : ref_outpin_map) {

00402 // spdlog::info("Pin -> Expression: {} -> {}", pin.first, pin.second);

00403 // ref_expr = comparator.preprocessExpression(pin.second);

00404 // }

00405 // for (const auto &pin : comp_outpin_map) {

00406 // spdlog::info("Pin => Expression: {} => {}", pin.first, pin.second);

00407 // comp_expr = comparator.preprocessExpression(pin.second);

00408 // }

00409 // std::vector<std::string> sorted_vars;

00410 // comparator.extractVariables(ref_expr, comp_expr, sorted_vars);

00411 // struct PinComparisonResult pin_comparison_result;

00412 // // comp_expr = "not ((not(A1) and not(A2)) or B)";

00413 // comparator.compareSingleExpressionPair(ref_expr, comp_expr, sorted_vars,

00414 // pin_comparison_result);

00415

00416 // comparator.compareCellLogic();

00417 comparator.compareCellLogic();

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.35 src/LibGroup.cpp File Reference 227

00418 comparator.generateReport(report_file_name);

00419

00420 spdlog::info("Functional equivalence check completed for cell: '{}'", cell);

00421 }

00422 spdlog::info("Functional equivalence check completed for all cells,");

00423 spdlog::info("Report written to: '{}'", report_file_name);

00424 }

7.35 src/LibGroup.cpp File Reference

#include "LibGroup.hpp"

Include dependency graph for LibGroup.cpp:

src/LibGroup.cpp

LibGroup.hpp

string si2dr_liberty.h

7.36 LibGroup.cpp

Go to the documentation of this file.
00001 #include "LibGroup.hpp"

00002

00003 LibGroup::LibGroup(si2drGroupIdT group, si2drErrorT &err) : group_(group), err_(err) {}

00004

00005 LibGroup::~LibGroup() {}

00006

00007 std::string LibGroup::getName() {

00008 si2drNamesIdT names = si2drGroupGetNames(group_, &err_);

00009 si2drStringT name = si2drIterNextName(names, &err_);

00010 si2drIterQuit(names, &err_);

00011 return name ? std::string(name) : std::string();

00012 }

00013

00014 std::string LibGroup::getType() {

00015 si2drStringT type = si2drGroupGetGroupType(group_, &err_);

00016 return type ? std::string(type) : std::string();

00017 }

00018

00019 si2drAttrsIdT LibGroup::getAttrs() { return si2drGroupGetAttrs(group_, &err_); }

00020

00021 si2drGroupsIdT LibGroup::getGroups() { return si2drGroupGetGroups(group_, &err_); }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

228 File Documentation

7.37 src/LibraryComparator.cpp File Reference

#include "LibraryComparator.hpp"

Include dependency graph for LibraryComparator.cpp:

src/LibraryComparator.cpp

LibraryComparator.hpp

chrono filesystem

fstream nlohmann/json.hppspdlog/spdlog.h

tabulate/table.hpp tabulate/markdown_exporter.hppLibFile.hpp

version.h

string

unordered_set

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

Iterators.hpp

json_utils.hppverilog_utils.hpp

LibAttribute.hppLibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h

7.38 LibraryComparator.cpp

Go to the documentation of this file.
00001 #include "LibraryComparator.hpp"

00002

00021 LibraryComparator::LibraryComparator(LibFile &ref_libfile, LibFile &comp_libfile, double reltol,

00022 double abstol)

00023 : reltol_(reltol), abstol_(abstol) {

00024 std::string ref_json_name = ref_libfile.basename_ + ".json";

00025 if (!std::filesystem::exists(ref_json_name)) {

00026 spdlog::info("Reference JSON file {} not found. Parsing first.", ref_json_name);

00027 ref_libfile.parse();

00028 ref_libfile.writeJsonToFile();

00029 ref_json_ = ref_libfile.lib_json_;

00030 } else {

00031 // Read the JSON file into json object

00032 std::ifstream ref_in(ref_json_name);

00033 if (!ref_in.is_open()) {

00034 spdlog::error("Could not open file '{}' for reading", ref_json_name);

00035 return;

00036 }

00037 try {

00038 ref_json_ = json::parse(ref_in);

00039 } catch (const json::parse_error &e) {

00040 spdlog::error("Error parsing reference JSON file '{}': {}", ref_json_name, e.what());

00041 return;

00042 }

00043 }

00044 std::string comp_json_name = comp_libfile.basename_ + ".json";

00045 if (!std::filesystem::exists(comp_json_name)) {

00046 spdlog::info("Comparison JSON file {} not found. Parsing first.", comp_json_name);

00047 comp_libfile.parse();

00048 comp_libfile.writeJsonToFile();

00049 comp_json_ = comp_libfile.lib_json_;

00050 } else {

00051 // Read the JSON file into json object

00052 std::ifstream comp_in(comp_json_name);

00053 if (!comp_in.is_open()) {

00054 spdlog::error("Could not open file '{}' for reading", comp_json_name);

00055 return;

00056 }

00057 try {

00058 comp_json_ = json::parse(comp_in);

00059 } catch (const json::parse_error &e) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.38 LibraryComparator.cpp 229

00060 spdlog::error("Error parsing comparison JSON file '{}': {}", comp_json_name, e.what());

00061 return;

00062 }

00063 }

00064

00065 ref_lib_path_ = ref_libfile.filepath_;

00066 comp_lib_path_ = comp_libfile.filepath_;

00067 spdlog::info("Successfully loaded JSON files for comparison");

00068 }

00069

00098 void LibraryComparator::compareLut(const std::string &cell_name, const std::string &pin_name,

00099 const std::string &timing_type, const std::string &related_pin,

00100 const std::string &arc_name, const json &ref_lut,

00101 const json &comp_lut, Table &table) {

00102 spdlog::info("Comparing LUT of '{}' ...", arc_name);

00103 std::vector<double> ref_index_1 = ref_lut["index_1"].get<std::vector<double>>();

00104 std::vector<double> ref_index_2 = ref_lut["index_2"].get<std::vector<double>>();

00105 std::vector<double> comp_index_1 = comp_lut["index_1"].get<std::vector<double>>();

00106 std::vector<double> comp_index_2 = comp_lut["index_2"].get<std::vector<double>>();

00107 if (ref_index_1 != comp_index_1 || ref_index_2 != comp_index_2) {

00108 spdlog::warn("Mismatch in LUT indices for '{}' in cell: '{}', pin: '{}', related_pin: '{}', "

00109 "timing_type: '{}'",

00110 arc_name, cell_name, pin_name, related_pin, timing_type);

00111 return;

00112 } else {

00113 spdlog::debug("LUT indices match for '{}'", arc_name);

00114

00115 std::vector<std::vector<double>> comp_value_matrix;

00116 // Generate a matrix of values from the JSON array for comparison library

00117 for (const auto &row_val : comp_lut["values"]) {

00118 std::vector<double> row_data;

00119 // Check if the row value is an array

00120 if (!row_val.is_array()) {

00121 spdlog::error(

00122 "Invalid LUT format: '{}' values should be an array of arrays in comp_lib '{}', "

00123 "cell '{}', pin '{}', "

00124 "related_pin '{}', timing_type '{}'",

00125 arc_name, this->comp_lib_path_.string(), cell_name, pin_name, related_pin, timing_type);

00126 return;

00127 }

00128 // Check if non-numeric values

00129 for (const auto &val : row_val) {

00130 if (val.is_number()) {

00131 row_data.push_back(val.get<double>());

00132 } else {

00133 spdlog::error("Non-numeric value found in '{}'.values, skipping value: {} in comp_lib "

00134 "'{}', cell '{}', "

00135 "pin '{}', related_pin '{}', timing_type '{}'",

00136 arc_name, val.dump(), this->comp_lib_path_.string(), cell_name, pin_name,

00137 related_pin, timing_type);

00138 return;

00139 }

00140 }

00141 comp_value_matrix.push_back(row_data);

00142 }

00143 // Generate a matrix of values from the JSON array for reference library

00144 std::vector<std::vector<double>> ref_value_matrix;

00145 for (const auto &row_val : ref_lut["values"]) {

00146 std::vector<double> row_data;

00147 // Check if the row value is an array

00148 if (!row_val.is_array()) {

00149 spdlog::error(

00150 "Invalid LUT format: '{}' values should be an array of arrays in ref_lib '{}', "

00151 "cell '{}', pin '{}', "

00152 "related_pin '{}', timing_type '{}'",

00153 arc_name, this->ref_lib_path_.string(), cell_name, pin_name, related_pin, timing_type);

00154 return;

00155 }

00156 // Check if non-numeric values

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

230 File Documentation

00157 for (const auto &val : row_val) {

00158 if (val.is_number()) {

00159 row_data.push_back(val.get<double>());

00160 } else {

00161 spdlog::error("Non-numeric value found in '{}'.values, skipping value: {} in ref_lib "

00162 "'{}', cell '{}', "

00163 "pin '{}', related_pin '{}', timing_type '{}'",

00164 arc_name, val.dump(), this->ref_lib_path_.string(), cell_name, pin_name,

00165 related_pin, timing_type);

00166 return;

00167 }

00168 }

00169 ref_value_matrix.push_back(row_data);

00170 }

00171 // Compare the matrix for relative tolerance

00172 if (!comp_value_matrix.empty() && !comp_value_matrix[0].empty()) {

00173 for (size_t i = 0; i < comp_value_matrix.size(); ++i) {

00174 for (size_t j = 0; j < comp_value_matrix[i].size(); ++j) {

00175 double ref_val = ref_value_matrix[i][j];

00176 double comp_val = comp_value_matrix[i][j];

00177 if (std::abs(ref_val - comp_val) > reltol_ * std::abs(ref_val) &&

00178 std::abs(ref_val - comp_val) > abstol_) {

00179 spdlog::debug("LUT value mismatch for '{}', index_1: {}, index_2: {}", arc_name,

00180 ref_index_1[i], ref_index_2[j]);

00181 table.add_row({related_pin + "->" + pin_name, std::to_string(ref_val),

00182 std::to_string(comp_val), std::to_string(comp_val - ref_val),

00183 std::to_string((comp_val - ref_val) / ref_val * 100), timing_type,

00184 arc_name, std::to_string(i + 1), std::to_string(ref_index_1[i]),

00185 std::to_string(j + 1), std::to_string(ref_index_2[j]), "<"});

00186 spdlog::debug("table size: {}", table.size());

00187 } else {

00188 spdlog::debug("LUT value match for '{}', index_1: {}, index_2: {}", arc_name,

00189 ref_index_1[i], ref_index_2[j]);

00190 }

00191 }

00192 }

00193 } else {

00194 spdlog::error(

00195 "Empty or invalid 'values' array found for cell: '{}', pin: '{}', related_pin: '{}', "

00196 "timing_type: '{}', arc: '{}'",

00197 cell_name, pin_name, related_pin, timing_type, arc_name);

00198 }

00199 }

00200 }

00201

00220 void LibraryComparator::compareTimingArc(const std::string &cell_name, const std::string &pin_name,

00221 const std::string &timing_type, const json &ref_timing_arc,

00222 const json &comp_timing_arc, Table &table) {

00223 spdlog::info("Comparing timing type '{}' ...", timing_type);

00224

00225 std::string related_pin = ref_timing_arc["related_pin"].get<std::string>();

00226 spdlog::debug("Related pin: '{}'", related_pin);

00227

00228 std::vector<std::string> arc_names = {"cell_rise", "cell_fall", "rise_transition",

00229 "fall_transition"};

00230 for (auto arc_name : arc_names) {

00231 if (comp_timing_arc.contains(arc_name)) {

00232 spdlog::debug("Comparing timing arc: '{}'", arc_name);

00233 // Look for the arc in the reference JSON

00234 if (ref_timing_arc.contains(arc_name)) {

00235 // Found this arc

00236 spdlog::debug("Found timing arc: '{}'", arc_name);

00237 compareLut(cell_name, pin_name, timing_type, related_pin, arc_name,

00238 ref_timing_arc[arc_name], comp_timing_arc[arc_name], table);

00239 } else {

00240 // arc not found in reference JSON

00241 spdlog::warn("Timing arc: '{}' not found in reference JSON", arc_name);

00242 }

00243 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.38 LibraryComparator.cpp 231

00244 }

00245 }

00246

00261 void LibraryComparator::comparePin(const std::string &cell_name, const std::string &pin_name,

00262 const json &ref_pin, const json &comp_pin, Table &table) {

00263 spdlog::info("Comparing pin '{}' ...", pin_name);

00264

00265 if (comp_pin.contains("timing_arcs")) {

00266 for (const auto &comp_arc : comp_pin["timing_arcs"]) {

00267 std::string timing_type = comp_arc["timing_type"].get<std::string>();

00268 spdlog::debug("Comparing timing type: '{}'", timing_type);

00269 // Look for the timing type in the reference JSON

00270 auto ref_arc_it = std::find_if(

00271 ref_pin["timing_arcs"].begin(), ref_pin["timing_arcs"].end(),

00272 [&timing_type](const json &ref_arc) { return ref_arc["timing_type"] == timing_type; });

00273 if (ref_arc_it != ref_pin["timing_arcs"].end()) {

00274 // Found this timing type

00275 spdlog::debug("Found timing type: '{}'", timing_type);

00276 compareTimingArc(cell_name, pin_name, timing_type, *ref_arc_it, comp_arc, table);

00277 } else {

00278 // timing arc not found in reference JSON

00279 spdlog::warn("Timing arc: '{}' not found in reference JSON", timing_type);

00280 }

00281 }

00282 } else {

00283 spdlog::info("No timing arcs found for pin: '{}'", comp_pin["pin_name"].get<std::string>());

00284 }

00285 }

00286

00301 void LibraryComparator::compareCell(const std::string &cell_name, const json &ref_cell,

00302 const json &comp_cell, Table &table) {

00303 spdlog::info("Comparing cell '{}' ...", cell_name);

00304

00305 if (comp_cell.contains("output_pins")) {

00306 for (const auto &comp_pin : comp_cell["output_pins"]) {

00307 std::string pin_name = comp_pin["pin_name"].get<std::string>();

00308 spdlog::debug("Comparing pin: '{}'", pin_name);

00309 // Look for the pin in the reference JSON

00310 auto ref_pin_it = std::find_if(

00311 ref_cell["output_pins"].begin(), ref_cell["output_pins"].end(),

00312 [&pin_name](const json &ref_pin) { return ref_pin["pin_name"] == pin_name; });

00313 if (ref_pin_it != ref_cell["output_pins"].end()) {

00314 // Found this pin

00315 spdlog::debug("Found pin: '{}'", pin_name);

00316 comparePin(cell_name, pin_name, *ref_pin_it, comp_pin, table);

00317 } else {

00318 // pin not found in reference JSON

00319 spdlog::warn("Pin: '{}' not found in reference JSON", pin_name);

00320 }

00321 }

00322 } else {

00323 spdlog::info("No output pins found for cell: '{}'", cell_name);

00324 }

00325 }

00326

00343 void LibraryComparator::generateReport(const std::string &output_file) {

00344 std::ofstream outfile(output_file);

00345 outfile << "# LIBRARY comparison\n" << std::endl;

00346 outfile << "**Reference library: " << ref_lib_path_ << "**\n" << std::endl;

00347 outfile << "**Comparison library: " << comp_lib_path_ << "**\n" << std::endl;

00348 outfile << "**Absolute tolerance: " << abstol_ << "**\n" << std::endl;

00349 outfile << "**Relative tolerance: " << reltol_ << "**\n" << std::endl;

00350 outfile << "**Performed by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;

00351 auto now = std::chrono::system_clock::now();

00352 std::time_t now_time_t = std::chrono::system_clock::to_time_t(now);

00353 std::tm *now_tm = std::localtime(&now_time_t);

00354 outfile << ". on: " << std::put_time(now_tm, "%c") << "**\n" << std::endl;

00355 outfile << "> Legend: < outlier, * scaled, ! indices switched, ^ slews extrapolated, ~ loads "

00356 "extrapolated,\n";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

232 File Documentation

00357 outfile << "> \n";
00358 outfile << "> Legend: + padding added, /0 divide by zero, / slews interpolated, # loads "

00359 "interpolated\n";
00360 outfile << "> \n";
00361 outfile << "> Legend: << value is less but unknown, >> value is more but unknown\n\n";
00362

00363 spdlog::info("Starting comparison report generation ...");

00364 for (const auto &comp_cell : comp_json_["cells"]) {

00365 std::string cell_name = comp_cell["cell_name"].get<std::string>();

00366 spdlog::debug("Comparing cell: '{}'", cell_name);

00367 // Look for the cell in the reference JSON

00368 auto ref_cell_it = std::find_if(

00369 ref_json_["cells"].begin(), ref_json_["cells"].end(),

00370 [&cell_name](const json &ref_cell) { return ref_cell["cell_name"] == cell_name; });

00371 if (ref_cell_it != ref_json_["cells"].end()) {

00372 // Found this cell

00373 spdlog::debug("Found cell: '{}'", cell_name);

00374 Table table;

00375 table.add_row({"Pin Name", "Reference", "Comparison", "Diff", "Diff %", "Type", "Arc Name",

00376 "Row #", "Index_1", "Col #", "Index_2", "Note"});

00377 // Header formatting

00378 for (size_t i = 0; i < table[0].size(); ++i) {

00379 table[0][i].format().font_color(Color::yellow).font_style({FontStyle::bold});

00380 }

00381 compareCell(cell_name, *ref_cell_it, comp_cell, table);

00382

00383 if (table.size() > 1) {

00384 // Data starts from row 1, row 0 is header

00385 size_t failed_count = table.size() - 1;

00386 double sum_diff = 0.0;

00387 double sum_diff_percent = 0.0;

00388 size_t outlier_count = 0;

00389 double max_diff = 0;

00390 double max_diff_percent = 0;

00391 std::vector<double> diff_values; // Store diff values for std deviation calculation

00392

00393 // Index of columns

00394 const int diff_index = 3;

00395 const int diff_percent_index = 4;

00396 const int note_index = 11;

00397

00398 for (size_t i = 1; i < table.size(); ++i) {

00399 try {

00400 double diff = std::stod(table[i][diff_index].get_text());

00401 double diff_percent = std::stod(table[i][diff_percent_index].get_text());

00402

00403 sum_diff += diff;

00404 sum_diff_percent += diff_percent;

00405 diff_values.push_back(diff_percent);

00406

00407 if (table[i][note_index].get_text() == "<") {

00408 outlier_count++;

00409 }

00410 // Change to absolute value for max diff

00411 if (std::abs(diff) > std::abs(max_diff)) {

00412 max_diff = diff;

00413 max_diff_percent = diff_percent;

00414 }

00415

00416 } catch (const std::invalid_argument &e) {

00417 spdlog::error("Could not convert value to double: {}", e.what());

00418 continue; // Skip this row if there's an error

00419 }

00420 }

00421

00422 double avg_diff = sum_diff / failed_count;

00423 double avg_diff_percent = sum_diff_percent / failed_count;

00424

00425 outfile << "## " << cell_name << "\n\n";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.39 src/LogicComparator.cpp File Reference 233

00426 outfile << "Delay Comparison in ns\n\n";
00427 if (output_file.substr(output_file.size() - 3) == ".md") {

00428 MarkdownExporter exporter;

00429 auto markdown = exporter.dump(table);

00430 outfile << markdown << std::endl;

00431 } else {

00432 outfile << table << std::endl;

00433 }

00434 outfile << std::endl;

00435 std::cout << table << std::endl;

00436 outfile << cell_name << " delay SUMMARY (abstol: " << abstol_ << ", reltol: " << reltol_

00437 << ")\n";
00438

00439 // Create summary table

00440 Table summary_table;

00441 summary_table.add_row({"Cell Name", "Data Type", "Failed Count", "Avg Diff", "Avg Diff%",

00442 "Max Diff", "Max Diff%", "Outliers"});

00443 summary_table.add_row({cell_name, "delay(ns)", std::to_string(failed_count),

00444 std::to_string(avg_diff), std::to_string(avg_diff_percent) + "%",

00445 std::to_string(max_diff), std::to_string(max_diff_percent) + "%",

00446 std::to_string(outlier_count)});

00447

00448 // Output summary table

00449 // Use std::filesystem to reliably get the extension

00450 std::filesystem::path file_path(output_file);

00451 if (file_path.has_extension() && file_path.extension() == ".md") {

00452 MarkdownExporter exporter;

00453 auto markdown = exporter.dump(summary_table);

00454 outfile << markdown << std::endl;

00455 } else {

00456 outfile << summary_table << std::endl;

00457 }

00458 outfile << "Worst delay outlier: Max Abs: " << max_diff << ", Max Rel: " << max_diff_percent

00459 << "%, Outliers: " << outlier_count << "\n\n";
00460 }

00461 } else {

00462 // cell not found in reference JSON

00463 spdlog::warn("Cell: '{}' not found in reference JSON", cell_name);

00464 }

00465 }

00466

00467 outfile.close();

00468 }

7.39 src/LogicComparator.cpp File Reference

#include "LogicComparator.hpp"

Include dependency graph for LogicComparator.cpp:

src/LogicComparator.cpp

LogicComparator.hpp

algorithm chrono cmath filesystem iomanip optional regex variant exprtk.hpp tabulate/markdown_exporter.hpp tabulate/table.hpp spdlog/spdlog.h version.h

Functions

• bool isIdentifier (const std::string &token)

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

234 File Documentation

Checks if a given string is a valid identifier.

• bool isOperator (const std::string &token)
Checks if a given token is a logical operator.

7.39.1 Function Documentation

7.39.1.1 isIdentifier()

bool isIdentifier (

const std::string & token)

Checks if a given string is a valid identifier.

A valid identifier must:

• Not be empty.

• Consist of alphanumeric characters and underscores.

• Start with an uppercase alphabetic character.

• Contain at least one alphabetic character.

Parameters

token The string to check.

Returns

True if the string is a valid identifier, false otherwise.

Definition at line 74 of file LogicComparator.cpp.

Here is the caller graph for this function:

isIdentifier

LogicComparator::extract
Variables

LogicComparator::preprocess
Expression

LogicComparator::compare
CellLogicfuncLibFilemain

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 235

7.39.1.2 isOperator()

bool isOperator (

const std::string & token)

Checks if a given token is a logical operator.

This function determines whether the input string token is one of the supported logical operators: ”and”,
”or”, ”xor”, or ”not”.

Parameters

token The string to check.

Returns

True if the token is a logical operator, false otherwise.

Definition at line 99 of file LogicComparator.cpp.

Here is the caller graph for this function:

isOperatorLogicComparator::preprocess
Expression

LogicComparator::compare
CellLogicfuncLibFilemain

7.40 LogicComparator.cpp

Go to the documentation of this file.
00001 #include "LogicComparator.hpp"

00002

00003 LogicComparator::LogicComparator(const std::map<std::string, std::string> &ref_outpin_map,

00004 const std::map<std::string, std::string> &comp_outpin_map,

00005 const std::string &cell_name)

00006 : ref_outpin_map_(ref_outpin_map), comp_outpin_map_(comp_outpin_map), cell_name_(cell_name) {}

00024 void LogicComparator::logic() {

00025 typedef exprtk::symbol_table<double> symbol_table_t;

00026 typedef exprtk::expression<double> expression_t;

00027 typedef exprtk::parser<double> parser_t;

00028

00029 const std::string expression_string = "not(A and B) or C";

00030

00031 symbol_table_t symbol_table;

00032 symbol_table.create_variable("A");

00033 symbol_table.create_variable("B");

00034 symbol_table.create_variable("C");

00035

00036 expression_t expression;

00037 expression.register_symbol_table(symbol_table);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

236 File Documentation

00038

00039 parser_t parser;

00040 parser.compile(expression_string, expression);

00041

00042 printf(" # | A | B | C | %s\n"
00043 "---+---+---+---+-%s\n",
00044 expression_string.c_str(), std::string(expression_string.size(), '-').c_str());

00045

00046 for (int i = 0; i < 8; ++i) {

00047 symbol_table.get_variable("A")->ref() = double(i & 0x01 ? 1 : 0);

00048 symbol_table.get_variable("B")->ref() = double(i & 0x02 ? 1 : 0);

00049 symbol_table.get_variable("C")->ref() = double(i & 0x04 ? 1 : 0);

00050

00051 const int result = static_cast<int>(expression.value());

00052

00053 printf(" %d | %d | %d | %d | %d \n", i,

00054 static_cast<int>(symbol_table.get_variable("A")->value()),

00055 static_cast<int>(symbol_table.get_variable("B")->value()),

00056 static_cast<int>(symbol_table.get_variable("C")->value()), result);

00057 }

00058 }

00059

00060 // --- Preprocessing Function ---

00061

00074 bool isIdentifier(const std::string &token) {

00075 if (token.empty())

00076 return false;

00077 // Check if the token is a valid identifier (upper alpha+ numeric + underscore)

00078 bool has_alpha = false;

00079 for (char c : token) {

00080 if (std::isalpha(c)) {

00081 has_alpha = true;

00082 } else if (!std::isalnum(c) && c != '_') {

00083 return false; // Contains invalid char

00084 }

00085 }

00086 // Must start with an uppercase alphabetic character

00087 return has_alpha && std::isupper(token[0]);

00088 }

00089

00099 bool isOperator(const std::string &token) {

00100 static const std::set<std::string> operators = {"and", "or", "xor", "not"};

00101 return operators.count(token);

00102 }

00103

00128 std::string LogicComparator::preprocessExpression(const std::string &input_expr) {

00129 std::string processed = input_expr;

00130 spdlog::debug("Preprocessing raw expression: {}", processed);

00131

00132 // 0. Trim leading/trailing whitespace first

00133 processed = std::regex_replace(processed, std::regex("^\\s+|\\s+$"), "");

00134 if (processed.empty()) {

00135 spdlog::debug("Input expression is empty.");

00136 return ""; // Handle empty input early

00137 }

00138

00139 // --- Helper function: build log string ---

00140 auto build_log_string = [](const auto &container) {

00141 std::ostringstream oss;

00142 for (auto it = container.begin(); it != container.end(); ++it) {

00143 oss << *it;

00144 if (std::next(it) != container.end()) {

00145 oss << ", ";

00146 }

00147 }

00148 return oss.str();

00149 };

00150

00151 // 1. Handle '!' for NOT carefully BEFORE adding general spaces.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 237

00152 // Replace logical NOT '!' with " not ", ensuring not to replace '!='.

00153 std::string temp_processed;

00154 temp_processed.reserve(processed.length() * 1.2); // Pre-allocate a bit more space

00155 for (size_t i = 0; i < processed.length(); ++i) {

00156 if (processed[i] == '!') {

00157 if (i + 1 < processed.length() && processed[i + 1] == '=') {

00158 temp_processed += "!="; // Keep inequality operator

00159 i++; // Skip the '='

00160 } else {

00161 temp_processed += " not "; // Replace logical NOT with spaced operator

00162 }

00163 } else {

00164 temp_processed += processed[i];

00165 }

00166 }

00167 processed = temp_processed;

00168 spdlog::trace("After '!' to 'not' conversion: {}", processed);

00169

00170 // 2. Add spaces around other operators and parentheses that need them

00171 processed = std::regex_replace(processed, std::regex("\\("), " (");

00172 processed = std::regex_replace(processed, std::regex("\\)"), ") ");

00173 processed = std::regex_replace(processed, std::regex("\\+"), " + "); // OR

00174 processed = std::regex_replace(processed, std::regex("\\^"), " ^ "); // XOR

00175 processed = std::regex_replace(processed, std::regex("*"), " * "); // AND

00176 // Consolidate multiple spaces into one and trim again

00177 processed = std::regex_replace(processed, std::regex("\\s+"), " ");

00178 processed = std::regex_replace(processed, std::regex("^\\s+|\\s+$"), "");

00179 spdlog::trace("After adding spaces: {}", processed);

00180

00181 // 3. Replace symbolic operators with their keyword equivalents

00182 // Note: 'not' is already handled.

00183 processed = std::regex_replace(processed, std::regex(" \\+ "), " or ");

00184 processed = std::regex_replace(processed, std::regex(" \\^ "), " xor ");

00185 processed = std::regex_replace(processed, std::regex(" * "), " and ");

00186 spdlog::trace("After operator keyword replacement: {}", processed);

00187

00188 // 4. Tokenize based on spaces

00189 std::stringstream ss(processed);

00190 // Read tokens skipping whitespace

00191 std::vector<std::string> tokens{std::istream_iterator<std::string>(ss),

00192 std::istream_iterator<std::string>()};

00193

00194 if (tokens.empty()) {

00195 spdlog::debug("No tokens found after tokenization.");

00196 return "";

00197 }

00198 spdlog::trace("Tokens after initial processing: [{}]", build_log_string(tokens));

00199

00200 // 5. Insert implied 'and'

00201 std::vector<std::string> tokens_with_implied_and;

00202 if (!tokens.empty()) {

00203 tokens_with_implied_and.push_back(tokens[0]);

00204 for (size_t i = 0; i < tokens.size() - 1; ++i) {

00205 const std::string ¤t_token = tokens[i];

00206 const std::string &next_token = tokens[i + 1];

00207

00208 // An operand ends if it's an identifier or a closing parenthesis.

00209 bool current_ends_operand = isIdentifier(current_token) || current_token == ")";

00210 // An operand starts if it's an identifier, an opening parenthesis, or 'not'.

00211 bool next_starts_operand =

00212 isIdentifier(next_token) || next_token == "(" || next_token == "not";

00213

00214 // We should insert 'and' if the current token ends an operand AND the next token starts one,

00215 // UNLESS the current token is already an operator/opening bracket OR the next token is an

00216 // operator/closing bracket. Explicit check: Don't insert 'and' if an operator already exists

00217 // between them.

00218 bool current_is_op_or_open =

00219 isOperator(current_token) || current_token == "not" || current_token == "(";

00220 bool next_is_op_or_close = isOperator(next_token) || next_token == "not" || next_token == ")";

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

238 File Documentation

00221

00222 if (current_ends_operand && next_starts_operand && !current_is_op_or_open &&

00223 !next_is_op_or_close) {

00224 spdlog::trace("Inserting implied 'and' between '{}' and '{}'", current_token, next_token);

00225 tokens_with_implied_and.push_back("and");

00226 }

00227

00228 tokens_with_implied_and.push_back(next_token); // Add the next token regardless

00229 }

00230 } else {

00231 // Handle case where initial tokenization yielded no tokens

00232 return "";

00233 }

00234

00235 spdlog::trace("Tokens after implied 'and': [{}]", build_log_string(tokens_with_implied_and));

00236

00237 // 6. Handle 'not Identifier' ONLY during reconstruction (NEW LOGIC)

00238 std::vector<std::string> final_tokens;

00239 for (size_t i = 0; i < tokens_with_implied_and.size(); ++i) {

00240 const std::string ¤t_token = tokens_with_implied_and[i];

00241

00242 if (current_token == "not") {

00243 // Check if the *next* token is an Identifier

00244 if (i + 1 < tokens_with_implied_and.size() && isIdentifier(tokens_with_implied_and[i + 1])) {

00245 // Found 'not Identifier', transform to 'not(Identifier)'

00246 final_tokens.push_back("not");

00247 final_tokens.push_back("(");

00248 final_tokens.push_back(tokens_with_implied_and[i + 1]); // The identifier

00249 final_tokens.push_back(")");

00250 i++; // Increment i to skip the identifier we just processed

00251 } else {

00252 // 'not' is followed by '(', another operator, or is at the end.

00253 // Add 'not' as is, let ExprTk parse 'not(...)' or handle errors.

00254 final_tokens.push_back("not");

00255 }

00256 } else {

00257 // Token is not 'not', just add it to the final list

00258 final_tokens.push_back(current_token);

00259 }

00260 }

00261 spdlog::trace("Tokens after 'not' parenthesis handling: [{}]", build_log_string(final_tokens));

00262

00263 // 7. Reconstruct the final expression string from tokens

00264 std::string final_expr;

00265 if (!final_tokens.empty()) {

00266 final_expr = final_tokens[0];

00267 for (size_t i = 1; i < final_tokens.size(); ++i) {

00268 const std::string &prev = final_tokens[i - 1];

00269 const std::string &curr = final_tokens[i];

00270

00271 // Add space smartly: No space after '(', no space before ')',

00272 // no space after 'not' if followed by '(', no space before ',' (in function args, if

00273 // applicable)

00274 bool add_space = true;

00275 if (prev == "(" || curr == ")" || curr == ",") {

00276 add_space = false;

00277 }

00278 if (prev == "not" && curr == "(") {

00279 add_space = false; // Already handled by 'not(...)' structure

00280 }

00281 // Potentially add more rules if needed for other operators/functions

00282

00283 if (add_space) {

00284 final_expr += " ";

00285 }

00286 final_expr += curr;

00287 }

00288 }

00289

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 239

00290 // 8. Final cleanup (consolidate any remaining multiple spaces and trim)

00291 final_expr = std::regex_replace(final_expr, std::regex("\\s+"), " ");

00292 final_expr = std::regex_replace(final_expr, std::regex("^\\s+|\\s+$"), "");

00293

00294 spdlog::debug("Preprocessed expression result: {}", final_expr);

00295 return final_expr;

00296 }

00297

00298 // --- Variable Extraction Helper ---

00327 bool LogicComparator::extractVariables(const std::string &expr1_raw, const std::string &expr2_raw,

00328 std::vector<std::string> &sorted_vars) {

00329 // Define the set of ExprTk keywords/function names to filter out (lowercase)

00330 // Even though isIdentifier checks for uppercase, keep this filter as a safety measure

00331 static const std::set<std::string> keywords = {"abs",

00332 "acos",

00333 "acosh",

00334 "and",

00335 "asin",

00336 "asinh",

00337 "assert",

00338 "atan",

00339 "atan2",

00340 "atanh",

00341 "avg",

00342 "break",

00343 "case",

00344 "ceil",

00345 "clamp",

00346 "continue",

00347 "cosh",

00348 "cos",

00349 "cot",

00350 "csc",

00351 "default",

00352 "deg2grad",

00353 "deg2rad",

00354 "else",

00355 "equal",

00356 "erfc",

00357 "erf",

00358 "exp",

00359 "expm1",

00360 "false",

00361 "floor",

00362 "for",

00363 "frac",

00364 "grad2deg",

00365 "hypot",

00366 "iclamp",

00367 "if",

00368 "ilike",

00369 "in",

00370 "inrange",

00371 /*"in",*/ "like",

00372 "log",

00373 "log10",

00374 "log1p",

00375 "log2",

00376 "logn",

00377 "mand",

00378 "max",

00379 "min",

00380 "mod",

00381 "mor",

00382 "mul",

00383 "nand",

00384 "ncdf",

00385 "nor",

00386 "not",

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

240 File Documentation

00387 "not_equal",

00388 /*"not",*/ "null",

00389 "or",

00390 "pow",

00391 "rad2deg",

00392 "repeat",

00393 "return",

00394 "root",

00395 "roundn",

00396 "round",

00397 "sec",

00398 "sgn",

00399 "shl",

00400 "shr",

00401 "sinc",

00402 "sinh",

00403 "sin",

00404 "sqrt",

00405 "sum",

00406 "swap",

00407 "switch",

00408 "tanh",

00409 "tan",

00410 "true",

00411 "trunc",

00412 "until",

00413 "var",

00414 "while",

00415 "xnor",

00416 "xor"};

00417

00418 // Regular expression to find potential identifiers (unchanged)

00419 const std::regex identifier_regex("[a-zA-Z_][a-zA-Z0-9_]*");

00420

00421 // Store validated and filtered variable names

00422 std::set<std::string> actual_vars1_set;

00423 std::set<std::string> actual_vars2_set;

00424

00425 // --- Helper function: build log string ---

00426 auto build_log_string = [](const auto &container) {

00427 std::ostringstream oss;

00428 oss << "[";

00429 for (auto it = container.begin(); it != container.end(); ++it) {

00430 oss << *it;

00431 if (std::next(it) != container.end()) {

00432 oss << ", ";

00433 }

00434 }

00435 oss << "]";

00436 return oss.str();

00437 };

00438

00439 // --- Process the first expression ---

00440 spdlog::debug("Extracting and validating identifiers from raw expr1: {}", expr1_raw);

00441 auto words_begin1 = std::sregex_iterator(expr1_raw.begin(), expr1_raw.end(), identifier_regex);

00442 auto words_end1 = std::sregex_iterator();

00443 for (std::sregex_iterator i = words_begin1; i != words_end1; ++i) {

00444 std::string potential_var = i->str();

00445 spdlog::trace("Regex found in expr1: {}", potential_var);

00446

00447 // 1. Validate using isIdentifier (now checks for uppercase etc.)

00448 if (isIdentifier(potential_var)) {

00449 // 2. Check if it's a keyword (still use lowercase comparison as a precaution)

00450 std::string lower_var = potential_var;

00451 std::transform(lower_var.begin(), lower_var.end(), lower_var.begin(),

00452 [](unsigned char c) { return std::tolower(c); });

00453

00454 if (keywords.find(lower_var) == keywords.end()) {

00455 actual_vars1_set.insert(potential_var); // Keep original case

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 241

00456 spdlog::trace("Kept variable from expr1: {}", potential_var);

00457 } else {

00458 spdlog::trace("Filtered keyword from expr1: {}", potential_var);

00459 }

00460 } else {

00461 spdlog::trace("Filtered invalid identifier from expr1: {}", potential_var);

00462 }

00463 }

00464 spdlog::debug("Validated variables found in expr1: {}", build_log_string(actual_vars1_set));

00465

00466 // --- Process the second expression ---

00467 spdlog::debug("Extracting and validating identifiers from raw expr2: {}", expr2_raw);

00468 auto words_begin2 = std::sregex_iterator(expr2_raw.begin(), expr2_raw.end(), identifier_regex);

00469 auto words_end2 = std::sregex_iterator();

00470 for (std::sregex_iterator i = words_begin2; i != words_end2; ++i) {

00471 std::string potential_var = i->str();

00472 spdlog::trace("Regex found in expr2: {}", potential_var);

00473

00474 // 1. Validate using isIdentifier

00475 if (isIdentifier(potential_var)) {

00476 // 2. Check if it's a keyword (still use lowercase comparison)

00477 std::string lower_var = potential_var;

00478 std::transform(lower_var.begin(), lower_var.end(), lower_var.begin(),

00479 [](unsigned char c) { return std::tolower(c); });

00480

00481 if (keywords.find(lower_var) == keywords.end()) {

00482 actual_vars2_set.insert(potential_var); // Keep original case

00483 spdlog::trace("Kept variable from expr2: {}", potential_var);

00484 } else {

00485 spdlog::trace("Filtered keyword from expr2: {}", potential_var);

00486 }

00487 } else {

00488 spdlog::trace("Filtered invalid identifier from expr2: {}", potential_var);

00489 }

00490 }

00491 spdlog::debug("Validated variables found in expr2: {}", build_log_string(actual_vars2_set));

00492

00493 // --- Compare the two variable sets ---

00494 if (actual_vars1_set == actual_vars2_set) {

00495 // Sets are equal, extract the variable list

00496 sorted_vars.assign(actual_vars1_set.begin(), actual_vars1_set.end());

00497 std::sort(sorted_vars.begin(), sorted_vars.end()); // Sort alphabetically

00498 spdlog::info("Variable sets match. Found unique variables for comparison: {}",

00499 build_log_string(sorted_vars));

00500 spdlog::info("Extracted variables done !");

00501 return true; // Variable sets are consistent

00502 } else {

00503 // Sets are not equal, report an error and return false

00504 spdlog::warn("Variable sets do not match between the two expressions!");

00505 // Calculate the differences for more detailed logging

00506 std::vector<std::string> diff1, diff2;

00507 std::set_difference(actual_vars1_set.begin(), actual_vars1_set.end(), actual_vars2_set.begin(),

00508 actual_vars2_set.end(),

00509 std::back_inserter(diff1)); // Vars only in expr1

00510 std::set_difference(actual_vars2_set.begin(), actual_vars2_set.end(), actual_vars1_set.begin(),

00511 actual_vars1_set.end(),

00512 std::back_inserter(diff2)); // Vars only in expr2

00513

00514 if (!diff1.empty()) {

00515 spdlog::warn("Variables only in reference expression: {}", build_log_string(diff1));

00516 }

00517 if (!diff2.empty()) {

00518 spdlog::warn("Variables only in comparison expression: {}", build_log_string(diff2));

00519 }

00520 sorted_vars.clear(); // Clear the output variable list

00521 return false; // Variable sets are inconsistent

00522 }

00523 }

00524

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

242 File Documentation

00525 // --- Implementation of compareSingleExpressionPair ---

00553 void LogicComparator::compareSingleExpressionPair(const std::string &ref_expression_processed,

00554 const std::string &comp_expression_processed,

00555 const std::vector<std::string> &sorted_vars,

00556 PinComparisonResult &result) {

00557 // Store processed expressions in the result struct

00558 result.ref_expr_processed = ref_expression_processed;

00559 result.comp_expr_processed = comp_expression_processed;

00560 result.comparison_possible = true; // Assume comparison is possible initially

00561

00562 spdlog::debug("Comparing processed expressions for pin '{}':", result.pin_name);

00563 spdlog::debug(" Ref : {}", ref_expression_processed);

00564 spdlog::debug(" Comp: {}", comp_expression_processed);

00565

00566 // --- ExprTk Setup ---

00567 typedef exprtk::symbol_table<double> symbol_table_t;

00568 typedef exprtk::expression<double> expression_t;

00569 typedef exprtk::parser<double> parser_t;

00570

00571 // Setup for Reference Expression

00572 symbol_table_t ref_symbol_table;

00573 expression_t ref_expression;

00574 parser_t ref_parser;

00575

00576 for (const auto &var_name : sorted_vars) {

00577 // Create variable, ExprTk manages its memory within the table

00578 if (!ref_symbol_table.create_variable(var_name)) {

00579 result.error_message = "Failed to create variable '" + var_name + "' in ref symbol table.";

00580 spdlog::error(result.error_message);

00581 result.comparison_possible = false;

00582 return; // Cannot proceed

00583 }

00584 }

00585 ref_expression.register_symbol_table(ref_symbol_table);

00586

00587 // Compile Reference Expression

00588 result.ref_compiles = ref_parser.compile(ref_expression_processed, ref_expression);

00589 if (!result.ref_compiles) {

00590 result.error_message = "Reference expression compilation failed: " + ref_parser.error();

00591 spdlog::warn("Pin '{}': {}", result.pin_name, result.error_message);

00592 result.comparison_possible = false;

00593 // Don't return yet, maybe the comparison one also fails

00594 } else {

00595 spdlog::debug("Pin '{}': Reference expression compiled successfully.", result.pin_name);

00596 }

00597

00598 // Setup for Comparison Expression

00599 symbol_table_t comp_symbol_table;

00600 expression_t comp_expression;

00601 parser_t comp_parser;

00602

00603 for (const auto &var_name : sorted_vars) {

00604 if (!comp_symbol_table.create_variable(var_name)) {

00605 // Append error if ref also failed, otherwise set it

00606 std::string comp_err = "Failed to create variable '" + var_name + "' in comp symbol table.";

00607 result.error_message += (result.error_message.empty() ? "" : "\n") + comp_err;

00608 spdlog::error(comp_err);

00609 result.comparison_possible = false; // Mark as impossible now

00610 return; // Cannot proceed if variable creation fails

00611 }

00612 }

00613 comp_expression.register_symbol_table(comp_symbol_table);

00614

00615 // Compile Comparison Expression

00616 result.comp_compiles = comp_parser.compile(comp_expression_processed, comp_expression);

00617 if (!result.comp_compiles) {

00618 std::string comp_err = "Comparison expression compilation failed: " + comp_parser.error();

00619 result.error_message += (result.error_message.empty() ? "" : "\n") + comp_err;

00620 spdlog::warn("Pin '{}': {}", result.pin_name, comp_err);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 243

00621 result.comparison_possible = false; // Mark as impossible if not already

00622 } else {

00623 spdlog::debug("Pin '{}': Comparison expression compiled successfully.", result.pin_name);

00624 }

00625

00626 // If either failed to compile, comparison is not possible

00627 if (!result.ref_compiles || !result.comp_compiles) {

00628 result.comparison_possible = false;

00629 return;

00630 }

00631

00632 // --- Truth Table Generation and Comparison ---

00633 size_t num_vars = sorted_vars.size();

00634 // Use unsigned long long for potentially large number of combinations

00635 unsigned long long num_combinations = 1ULL << num_vars;

00636 // Prevent excessively large tables (e.g., > 20 variables is 1M+ rows)

00637 const unsigned long long MAX_COMBINATIONS = 1ULL << 20; // Limit to 2^20 combinations

00638 if (num_vars > 20) { // Check against var count for clarity

00639 result.error_message = "Too many variables (" + std::to_string(num_vars) +

00640 "). Max supported for truth table is 20.";

00641 spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);

00642 result.comparison_possible = false;

00643 return;

00644 }

00645 if (num_combinations == 0 && num_vars > 0) { // Overflow check

00646 result.error_message = "Number of combinations calculation overflowed for " +

00647 std::to_string(num_vars) + " variables.";

00648 spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);

00649 result.comparison_possible = false;

00650 return;

00651 }

00652

00653 std::vector<bool> ref_results;

00654 std::vector<bool> comp_results;

00655 ref_results.reserve(static_cast<size_t>(num_combinations)); // Avoid reallocations

00656 comp_results.reserve(static_cast<size_t>(num_combinations));

00657

00658 // --- Prepare Tabulate Tables ---

00659 Table ref_table;

00660 Table comp_table;

00661 Table::Row_t header_row;

00662 header_row.push_back("#"); // Row number column

00663 for (const auto &var_name : sorted_vars) {

00664 header_row.push_back(var_name);

00665 }

00666 header_row.push_back(ref_expression_processed); // Reference expression as last column header

00667 ref_table.add_row(header_row);

00668

00669 // Adjust header for comparison table

00670 header_row.back() = comp_expression_processed; // Change last header to comparison expression

00671 comp_table.add_row(header_row);

00672

00673 // Format header rows

00674 for (size_t i = 0; i < ref_table[0].size(); ++i) {

00675 ref_table[0][i].format().font_color(Color::yellow).font_style({FontStyle::bold});

00676 comp_table[0][i].format().font_color(Color::yellow).font_style({FontStyle::bold});

00677 }

00678

00679 spdlog::debug("Pin '{}': Generating truth table with {} variables ({} combinations)...",

00680 result.pin_name, num_vars, num_combinations);

00681

00682 bool evaluation_error = false;

00683 for (unsigned long long i = 0; i < num_combinations; ++i) {

00684 Table::Row_t ref_data_row;

00685 Table::Row_t comp_data_row;

00686 ref_data_row.push_back(std::to_string(i));

00687 comp_data_row.push_back(std::to_string(i));

00688

00689 // Set variable values for this combination

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

244 File Documentation

00690 for (size_t j = 0; j < num_vars; ++j) {

00691 // The j-th bit of i determines the value of the j-th variable

00692 bool bit_value = ((i >> j) & 1ULL);

00693 double var_value = bit_value ? double(1.0) : double(0.0); // ExprTk uses floating point

00694

00695 // Get variable reference and assign value

00696 // Need error checking here in theory, but create_variable should have caught issues

00697 ref_symbol_table.get_variable(sorted_vars[j])->ref() = var_value;

00698 comp_symbol_table.get_variable(sorted_vars[j])->ref() = var_value;

00699

00700 // Add input value to table rows (as string "0" or "1")

00701 std::string bit_str = bit_value ? "1" : "0";

00702 ref_data_row.push_back(bit_str);

00703 comp_data_row.push_back(bit_str);

00704 }

00705

00706 // Evaluate expressions

00707 double ref_val, comp_val;

00708 try {

00709 ref_val = ref_expression.value();

00710 } catch (const std::exception &e) {

00711 result.error_message +=

00712 "\nReference evaluation failed at combination " + std::to_string(i) + ": " + e.what();

00713 spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);

00714 result.comparison_possible = false;

00715 evaluation_error = true;

00716 break; // Stop evaluation

00717 }

00718 try {

00719 comp_val = comp_expression.value();

00720 } catch (const std::exception &e) {

00721 result.error_message +=

00722 "\nComparison evaluation failed at combination " + std::to_string(i) + ": " + e.what();

00723 spdlog::error("Pin '{}': {}", result.pin_name, result.error_message);

00724 result.comparison_possible = false;

00725 evaluation_error = true;

00726 break; // Stop evaluation

00727 }

00728

00729 // Store boolean results (commonly, non-zero is true in logic contexts)

00730 bool ref_bool_result = (ref_val != double(0.0));

00731 bool comp_bool_result = (comp_val != double(0.0));

00732

00733 ref_results.push_back(ref_bool_result);

00734 comp_results.push_back(comp_bool_result);

00735

00736 // Add output results to table rows (as string "0" or "1")

00737 ref_data_row.push_back(ref_bool_result ? "1" : "0");

00738 comp_data_row.push_back(comp_bool_result ? "1" : "0");

00739

00740 // Add rows to tables

00741 ref_table.add_row(ref_data_row);

00742 comp_table.add_row(comp_data_row);

00743

00744 } // End of combination loop

00745

00746 if (evaluation_error) {

00747 return; // Don't proceed if evaluation failed

00748 }

00749

00750 // --- Final Comparison ---

00751 if (result.comparison_possible) {

00752 result.are_equivalent = (ref_results == comp_results);

00753 if (result.are_equivalent) {

00754 spdlog::info("Pin '{}': Expressions ARE logically equivalent.", result.pin_name);

00755 } else {

00756 spdlog::warn("Pin '{}': Expressions ARE NOT logically equivalent.", result.pin_name);

00757 result.error_message +=

00758 "\nTruth table outputs differ."; // Add specific reason for non-equivalence

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 245

00759 }

00760

00761 // Store the generated tables in the result struct

00762 result.ref_truth_table = ref_table;

00763 result.comp_truth_table = comp_table;

00764 }

00765 }

00766

00812 void LogicComparator::compareCellLogic() {

00813

00814 // 1. Collect all unique pin names from both maps

00815 std::set<std::string> unique_pin_names;

00816 for (const auto &pair : ref_outpin_map_) {

00817 unique_pin_names.insert(pair.first);

00818 }

00819 for (const auto &pair : comp_outpin_map_) {

00820 unique_pin_names.insert(pair.first);

00821 }

00822

00823 spdlog::info("Starting logic comparison for cell '{}' with {} unique output pins...", cell_name_,

00824 unique_pin_names.size());

00825

00826 // 2. Iterate through each unique pin name

00827 for (const std::string &pin_name : unique_pin_names) {

00828 PinComparisonResult pin_result;

00829 pin_result.pin_name = pin_name;

00830 pin_result.comparison_possible = true; // Assume possible initially

00831

00832 // 3. Get raw expressions

00833 auto ref_it = ref_outpin_map_.find(pin_name);

00834 auto comp_it = comp_outpin_map_.find(pin_name);

00835

00836 if (ref_it == ref_outpin_map_.end()) {

00837 pin_result.error_message = "Pin not found in reference map.";

00838 spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name, pin_result.error_message);

00839 pin_result.comparison_possible = false;

00840 // Still try to get the comparison expression for reporting

00841 if (comp_it != comp_outpin_map_.end()) {

00842 pin_result.comp_expr_raw = comp_it->second;

00843 }

00844 } else {

00845 pin_result.ref_expr_raw = ref_it->second;

00846 spdlog::debug("Pin -> Expression: {} -> {}", pin_name, pin_result.ref_expr_raw);

00847 }

00848

00849 if (comp_it == comp_outpin_map_.end()) {

00850 std::string comp_err = "Pin not found in comparison map.";

00851 pin_result.error_message += (pin_result.error_message.empty() ? "" : "\n") + comp_err;

00852 spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name, comp_err);

00853 pin_result.comparison_possible = false;

00854 // If ref existed, store it

00855 if (ref_it != ref_outpin_map_.end()) {

00856 pin_result.ref_expr_raw = ref_it->second; // Already stored if ref exists

00857 }

00858 } else {

00859 pin_result.comp_expr_raw = comp_it->second;

00860 spdlog::debug("Pin => Expression: {} => {}", pin_name, pin_result.comp_expr_raw);

00861 }

00862

00863 // If pin missing in either, we can't compare, but store result and continue

00864 if (!pin_result.comparison_possible) {

00865 all_pin_results_[pin_name] = pin_result;

00866 continue;

00867 }

00868

00869 // 4. Preprocess expressions

00870 std::string ref_processed = preprocessExpression(pin_result.ref_expr_raw);

00871 std::string comp_processed = preprocessExpression(pin_result.comp_expr_raw);

00872

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

246 File Documentation

00873 if (ref_processed.empty()) {

00874 pin_result.error_message += "\nReference expression became empty after preprocessing.";

00875 spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name,

00876 "Reference expression became empty after preprocessing.");

00877 pin_result.comparison_possible = false;

00878 }

00879 if (comp_processed.empty()) {

00880 std::string comp_err = "\nComparison expression became empty after preprocessing.";

00881 pin_result.error_message += (pin_result.error_message.empty() ? "" : "\n") + comp_err;

00882 spdlog::warn("Cell '{}', Pin '{}': {}", cell_name_, pin_name,

00883 "Comparison expression became empty after preprocessing.");

00884 pin_result.comparison_possible = false; // Mark as impossible if not already

00885 }

00886 // If preprocessing failed for either, store and continue

00887 if (ref_processed.empty() || comp_processed.empty()) {

00888 pin_result.ref_expr_processed = ref_processed; // Store possibly empty strings

00889 pin_result.comp_expr_processed = comp_processed;

00890 all_pin_results_[pin_name] = pin_result;

00891 continue;

00892 }

00893

00894 // 5. Extract and validate variables

00895 std::vector<std::string> sorted_vars;

00896 // Pass RAW expressions to extractVariables as it uses regex on original format

00897 bool variables_match =

00898 extractVariables(pin_result.ref_expr_raw, pin_result.comp_expr_raw, sorted_vars);

00899

00900 if (!variables_match) {

00901 pin_result.error_message = "Variable sets do not match between expressions.";

00902 // extractVariables already logs details

00903 pin_result.comparison_possible = false;

00904 pin_result.ref_expr_processed = ref_processed; // Store processed even if vars mismatch

00905 pin_result.comp_expr_processed = comp_processed;

00906 all_pin_results_[pin_name] = pin_result;

00907 continue;

00908 }

00909 // --- Helper function: build log string ---

00910 auto build_log_string = [](const auto &container) {

00911 std::ostringstream oss;

00912 for (auto it = container.begin(); it != container.end(); ++it) {

00913 oss << *it;

00914 if (std::next(it) != container.end()) {

00915 oss << ", ";

00916 }

00917 }

00918 return oss.str();

00919 };

00920 spdlog::info("Pin '{}': Variable sets match. Found unique variables: {}", pin_name,

00921 build_log_string(sorted_vars));

00922

00923 // 6. Compare the single pair using the processed expressions

00924 // Pass pin_result by reference - it will be populated by the function

00925 compareSingleExpressionPair(ref_processed, comp_processed, sorted_vars, pin_result);

00926

00927 // 7. Store the detailed result for this pin

00928 all_pin_results_[pin_name] = pin_result;

00929

00930 } // End of pin loop

00931

00932 spdlog::info("Logic comparison finished for cell '{}'.", cell_name_);

00933 }

00934

00974 void LogicComparator::generateReport(const std::string &output_file) {

00975 // --- 0. Start Info ---

00976 spdlog::info("Generating report for cell '{}' to '{}'...", cell_name_, output_file);

00977

00978 // --- 1. Determine Output Format ---

00979 bool output_markdown = false;

00980 try {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 247

00981 // Use std::filesystem to reliably get the extension

00982 std::filesystem::path file_path(output_file);

00983 if (file_path.has_extension() && file_path.extension() == ".md") {

00984 output_markdown = true;

00985 }

00986 } catch (const std::exception &e) {

00987 spdlog::warn("Could not determine file extension for '{}': {}. Defaulting to plain text.",

00988 output_file, e.what());

00989 output_markdown = false; // Default to plain text on error

00990 }

00991

00992 // --- 2. Open Output File ---

00993 std::ofstream outfile(output_file,

00994 std::ios::app); // Use app to append if file exists, or create new

00995 if (!outfile.is_open()) {

00996 spdlog::error("Failed to open output report file: {}", output_file);

00997 return;

00998 }

00999 spdlog::info("Generating report for cell '{}' to '{}' (Format: {})...", cell_name_, output_file,

01000 output_markdown ? "Markdown" : "Plain Text");

01001

01002 // --- 3. Report Header ---

01003 outfile << "# Logic Equivalence Comparison Report\n\n";
01004 outfile << "**Cell Name: " << cell_name_ << "**\n\n";
01005 // Reference Pin Functions Table

01006 Table ref_pin_table;

01007 ref_pin_table.add_row({"Reference Pin", "Function"});

01008 ref_pin_table[0][0].format().font_style({FontStyle::bold});

01009 ref_pin_table[0][1].format().font_style({FontStyle::bold});

01010 for (const auto &[pin, function] : ref_outpin_map_) {

01011 ref_pin_table.add_row({pin, "`" + function + "`"}); // Add backticks to function

01012 }

01013 // Comparison Pin Functions Table

01014 Table comp_pin_table;

01015 comp_pin_table.add_row({"Comparison Pin", "Function"});

01016 comp_pin_table[0][0].format().font_style({FontStyle::bold});

01017 comp_pin_table[0][1].format().font_style({FontStyle::bold});

01018 for (const auto &[pin, function] : comp_outpin_map_) {

01019 comp_pin_table.add_row({pin, "`" + function + "`"}); // Add backticks to function

01020 }

01021

01022 // --- 4. Report Metadata ---

01023 outfile << "**Performed by " << APP_NAME << " v" << APP_VERSION << " from " << APP_AUTHOR;

01024 auto now = std::chrono::system_clock::now();

01025 std::time_t now_time_t = std::chrono::system_clock::to_time_t(now);

01026 std::tm *now_tm = std::localtime(&now_time_t);

01027 outfile << ". on: " << std::put_time(now_tm, "%c") << "**\n" << std::endl;

01028

01029 // --- 5. Legend Generation ---

01030 outfile << "## Legend\n\n";
01031 Table legend_table;

01032 legend_table.add_row({"Symbol", "Meaning"});

01033 legend_table[0][0].format().font_style({FontStyle::bold});

01034 legend_table[0][1].format().font_style({FontStyle::bold});

01035 legend_table.add_row({"[OK]", "Logically Equivalent"});

01036 legend_table.add_row({"[NO]", "Not Logically Equivalent"});

01037 legend_table.add_row({"[NA]", "Comparison Not Applicable (General)"}); // Changed from possible

01038 legend_table.add_row({"[VM]", "Variable Mismatch (Cannot Compare)"});

01039 legend_table.add_row({"[CE]", "Compilation Error (Cannot Compare)"});

01040 legend_table.add_row({"[EE]", "Evaluation Error (Cannot Compare)"});

01041 legend_table.add_row({"[PE]", "Preprocessing/Pin/Setup Error (Cannot Compare)"});

01042

01043 // --- 6. Export Legend Table ---

01044 if (output_markdown) {

01045 MarkdownExporter exporter;

01046 outfile << exporter.dump(ref_pin_table) << "\n"; // Export ref pin table

01047 outfile << exporter.dump(comp_pin_table) << "\n"; // Export comp pin table

01048 outfile << exporter.dump(legend_table) << "\n"; // Export legend table

01049 } else {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

248 File Documentation

01050 outfile << ref_pin_table << "\n"; // Export ref pin table

01051 outfile << comp_pin_table << "\n"; // Export comp pin table

01052 outfile << legend_table << "\n"; // Export legend table (plain text)

01053 }

01054

01055 // --- 7. Process Pin Results ---

01056 for (const auto &[pin_name, result] : all_pin_results_) { // Use passed argument

01057 outfile << "## Pin: `" << pin_name << "`\n\n"; // Use backticks for pin name

01058

01059 // --- Output Truth Tables (Always if available) ---

01060 if (result.ref_truth_table.has_value()) {

01061 outfile << "### Reference Truth Table\n\n";
01062 Table ref_table = result.ref_truth_table.value();

01063 if (output_markdown) {

01064 MarkdownExporter exporter;

01065 outfile << exporter.dump(ref_table) << "\n";
01066 } else {

01067 outfile << ref_table << "\n";
01068 }

01069 } else {

01070 outfile << "*Reference truth table not generated (e.g., due to compilation error).*\n\n";
01071 }

01072

01073 if (result.comp_truth_table.has_value()) {

01074 outfile << "### Comparison Truth Table\n\n";
01075 Table comp_table = result.comp_truth_table.value();

01076 if (output_markdown) {

01077 MarkdownExporter exporter;

01078 outfile << exporter.dump(comp_table) << "\n";
01079 } else {

01080 outfile << comp_table << "\n";
01081 }

01082 } else {

01083 outfile << "*Comparison truth table not generated (e.g., due to compilation error).*\n\n";
01084 }

01085

01086 // --- Generate Summary Table ---

01087 outfile << "### Comparison Summary\n\n";
01088 Table summary_table;

01089 summary_table.add_row({"Property", "Value"});

01090 summary_table[0][0].format().font_style({FontStyle::bold});

01091 summary_table[0][1].format().font_style({FontStyle::bold});

01092 summary_table[0][0].format().font_color(Color::yellow);

01093 summary_table[0][1].format().font_color(Color::yellow);

01094

01095 // Determine Status Symbol using ASCII codes

01096 std::string status_symbol;

01097 if (!result.comparison_possible) {

01098 status_symbol = "[NA]"; // Default Not Applicable

01099 if (!result.error_message.empty()) {

01100 if (result.error_message.find("Variable sets do not match") != std::string::npos) {

01101 status_symbol = "[VM]";

01102 } else if (!result.ref_compiles || !result.comp_compiles ||

01103 result.error_message.find("compilation failed") != std::string::npos) {

01104 // Check flags first, then error message as fallback

01105 status_symbol = "[CE]";

01106 } else if (result.error_message.find("evaluation failed") != std::string::npos) {

01107 status_symbol = "[EE]";

01108 } else {

01109 // If comparison_possible is false for other reasons (e.g., pin missing, setup errors)

01110 status_symbol = "[PE]";

01111 }

01112 } else if (!result.ref_compiles || !result.comp_compiles) {

01113 // Handle cases where comparison_possible might be true but compilation failed (should

01114 // ideally not happen if logic is sound)

01115 status_symbol = "[CE]";

01116 } else {

01117 status_symbol = "[PE]"; // Fallback if no error message but still not possible

01118 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.40 LogicComparator.cpp 249

01119 } else if (result.are_equivalent) {

01120 status_symbol = "[OK]";

01121 } else {

01122 status_symbol = "[NO]";

01123 }

01124

01125 summary_table.add_row({"Status", status_symbol});

01126 summary_table.add_row({"Reference (Raw)", "`" + result.ref_expr_raw + "`"});

01127 summary_table.add_row({"Comparison (Raw)", "`" + result.comp_expr_raw + "`"});

01128 summary_table.add_row({"Reference (Processed)", "`" + result.ref_expr_processed + "`"});

01129 summary_table.add_row({"Comparison (Processed)", "`" + result.comp_expr_processed + "`"});

01130 summary_table.add_row({"Ref Expression Compiled", result.ref_compiles ? "Yes" : "No"});

01131 summary_table.add_row({"Comp Expression Compiled", result.comp_compiles ? "Yes" : "No"});

01132 summary_table.add_row({"Logically Equivalent", result.comparison_possible

01133 ? (result.are_equivalent ? "Yes" : "No")

01134 : "N/A"});

01135 summary_table[1][0].format().font_style({FontStyle::bold});

01136 summary_table[2][0].format().font_style({FontStyle::bold});

01137 summary_table[3][0].format().font_style({FontStyle::bold});

01138 summary_table[4][0].format().font_style({FontStyle::bold});

01139 summary_table[5][0].format().font_style({FontStyle::bold});

01140 summary_table[6][0].format().font_style({FontStyle::bold});

01141 summary_table[7][0].format().font_style({FontStyle::bold});

01142 summary_table[8][0].format().font_style({FontStyle::bold});

01143

01144 if (!result.error_message.empty()) {

01145 std::string formatted_error = result.error_message;

01146 if (output_markdown) {

01147 // Basic newline replacement for Markdown

01148 size_t pos = 0;

01149 while ((pos = formatted_error.find('\n', pos)) != std::string::npos) {

01150 formatted_error.replace(pos, 1, "
");

01151 pos += 4; // Length of "
"

01152 }

01153 }

01154 summary_table.add_row({"Details/Error", formatted_error});

01155 }

01156

01157 // Output Summary Table

01158 if (output_markdown) {

01159 MarkdownExporter exporter;

01160 outfile << exporter.dump(summary_table) << "\n";
01161 } else {

01162 outfile << summary_table << "\n";
01163 }

01164 std::cout << summary_table << "\n"; // Print to console for immediate feedback

01165

01166 outfile << "---\n\n"; // Separator between pins

01167

01168 } // End of pin results loop

01169

01170 outfile.close();

01171 spdlog::info("Report generation complete for cell '{}'.", cell_name_);

01172 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

250 File Documentation

7.41 src/LogicExtractor.cpp File Reference

#include "LogicExtractor.hpp"

Include dependency graph for LogicExtractor.cpp:

src/LogicExtractor.cpp

LogicExtractor.hpp

verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

Functions

• void extractAndPrintNetlistInfo (const std::string &verilog_file, const std::string &cell)
Extracts and prints netlist information from a Verilog file for a specified cell.

• std::map< std::string, std::string > extractLogicFromVerilog (const std::string &verilog_file, const
std::string &cell)

Extracts logic expressions from a Verilog file for a specified cell.

7.41.1 Function Documentation

7.41.1.1 extractAndPrintNetlistInfo()

void extractAndPrintNetlistInfo (

const std::string & verilog_file,

const std::string & cell)

Extracts and prints netlist information from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, extracts information about the primary inputs,
primary outputs, internal wires, and gate drivers within a specified cell (module). It then prints a summary
of the extracted information to the console using spdlog.

Parameters

verilog_file The path to the Verilog file to be parsed.
cell The name of the cell (module) for which to extract netlist information.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.41 src/LogicExtractor.cpp File Reference 251

Exceptions

std::exception If any error occurs during Verilog parsing or info extraction.

Note

The function uses the slang library for Verilog parsing and a custom LogicExtractor class to extract
the desired information. Error messages are logged using spdlog.

Definition at line 676 of file LogicExtractor.cpp.

Here is the call graph for this function:

extractAndPrintNetlistInfo

LogicExtractor::getExtracted
Gates

LogicExtractor::getInternal
Wires

LogicExtractor::getPrimary
Inputs

LogicExtractor::getPrimary
Outputs

7.41.1.2 extractLogicFromVerilog()

std::map< std::string, std::string > extractLogicFromVerilog (

const std::string & verilog_file,

const std::string & cell)

Extracts logic expressions from a Verilog file for a specified cell.

This function parses a Verilog file using the slang library, identifies the specified cell, and extracts the
logic expressions for its outputs. It returns a map where the keys are output signal names and the values
are their corresponding logic expressions as strings.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

252 File Documentation

Parameters

verilog_file The path to the Verilog file to parse.
cell The name of the cell (module) for which to extract logic expressions.

Returns

A map of output signal names to their logic expressions. Returns an empty map if parsing fails,
the cell is not found, or no logic expressions can be derived.

Note

The function uses the slang library for Verilog parsing. Ensure that slang is properly installed and
configured before using this function.

The logic extraction process involves traversing the syntax tree of the Verilog code and identifying
relevant assignments and expressions within the specified cell.

Error messages and warnings are logged using the spdlog library.

Definition at line 755 of file LogicExtractor.cpp.

Here is the call graph for this function:

extractLogicFromVerilog LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive LogicExtractor::formatExpression

Here is the caller graph for this function:

extractLogicFromVerilogfuncLibFilemain

7.42 LogicExtractor.cpp

Go to the documentation of this file.
00001 #include "LogicExtractor.hpp"

00002

00003 // --- Implementation for LogicExtractor ---

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 253

00004

00018 void LogicExtractor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

00019 if (parsingComplete_)

00020 return; // Don't re-process if called again

00021

00022 if (module.header && module.header->name.valid()) {

00023 std::string_view moduleName = module.header->name.valueText();

00024 if (!targetCell_.empty() && moduleName == targetCell_) {

00025 spdlog::info("LogicExtractor: Found target module: {}", targetCell_);

00026 inTargetModule_ = true;

00027

00028 // Reset state for the target module

00029 primaryInputs_.clear();

00030 primaryOutputs_.clear();

00031 internalWires_.clear();

00032 portDirections_.clear(); // Clear temporary direction map

00033 gateOutputDrivers_.clear();

00034 // logicCache_.clear(); // For Step 2

00035

00036 // Visit children (ports, declarations, instances) IN ORDER

00037 // It's often better to visit declarations first, then the port list

00038 // Slang's default visitDefault might handle this, but be aware.

00039 visitDefault(module);

00040

00041 // --- Finalize Ports after visiting declarations and port list ---

00042 // This part might be better placed *after* visiting NonAnsiPortList,

00043 // assuming the list visit confirms the names from the header.

00044 // Let's move the finalization logic to handle(NonAnsiPortListSyntax)

00045

00046 // Mark that we finished processing the target module

00047 inTargetModule_ = false; // Important to prevent processing other modules

00048 parsingComplete_ = true; // Stop processing after finding the target

00049 spdlog::info("LogicExtractor: Finished visiting target module '{}'.", targetCell_);

00050

00051 } else if (!parsingComplete_) {

00052 // If not the target module yet, continue searching

00053 visitDefault(module);

00054 }

00055 } else if (!parsingComplete_) {

00056 // Handle modules without valid headers if necessary, or just traverse

00057 visitDefault(module);

00058 }

00059 }

00060

00061 // Handle Port Declarations (defines direction and type, usually inside module body)

00092 void LogicExtractor::handle(const slang::syntax::PortDeclarationSyntax &portDecl) {

00093 if (!inTargetModule_)

00094 return;

00095 spdlog::debug("LogicExtractor: Handling Port Declaration");

00096

00097 std::string direction = "unknown";

00098 if (portDecl.header) {

00099 // Determine direction (input/output/inout)

00100 // Important: Use valueText() as Slang typically represents keywords as text tokens

00101 if (auto varHeader = portDecl.header->as_if<slang::syntax::VariablePortHeaderSyntax>()) {

00102 if (varHeader->direction.valid()) {

00103 direction = std::string(varHeader->direction.valueText());

00104 }

00105 } else if (auto netHeader = portDecl.header->as_if<slang::syntax::NetPortHeaderSyntax>()) {

00106 if (netHeader->direction.valid()) {

00107 direction = std::string(netHeader->direction.valueText());

00108 }

00109 }

00110 // Add InterfacePortHeaderSyntax if needed

00111 } else {

00112 spdlog::warn("LogicExtractor: Port declaration without header found.");

00113 }

00114

00115 for (const auto &declarator : portDecl.declarators) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

254 File Documentation

00116 if (declarator->name.valid()) {

00117 std::string portName = std::string(declarator->name.valueText());

00118 if (portDirections_.count(portName) && portDirections_[portName] != "unknown") {

00119 spdlog::warn("LogicExtractor: Multiple direction declarations for port '{}'. Keeping first "

00120 "one ('{}'). New direction: '{}'",

00121 portName, portDirections_[portName], direction);

00122 } else {

00123 spdlog::info("LogicExtractor: Storing direction '{}' for port '{}'", direction, portName);

00124 portDirections_[portName] = direction;

00125 if (direction == "input") {

00126 primaryInputs_.insert(portName);

00127 internalWires_.insert(portName); // Inputs are also technically 'wires' usable internally

00128 } else if (direction == "output") {

00129 primaryOutputs_.insert(portName);

00130 internalWires_.insert(portName); // Outputs are also wires driven by something

00131 } else if (direction == "inout") {

00132 spdlog::info("LogicExtractor: Inout port '{}' found. Adding to both inputs and outputs.",

00133 portName);

00134 primaryInputs_.insert(portName);

00135 primaryOutputs_.insert(portName);

00136 internalWires_.insert(portName);

00137 } else {

00138 spdlog::warn("LogicExtractor: Port '{}' found in declaration but has unknown or missing "

00139 "direction '{}'. Treating as internal wire.",

00140 portName, direction);

00141 internalWires_.insert(portName);

00142 }

00143 // logicCache_[portName] = portName; // For Step 2

00144 }

00145 } else {

00146 spdlog::warn(

00147 "LogicExtractor: Port declarator without a name found in PortDeclarationSyntax.");

00148 }

00149 }

00150 // Don't call visitDefault here, as it might revisit things unexpectedly.

00151 // Let the main module visitor handle traversing into children if necessary.

00152 }

00153

00154 // Handle Non-ANSI Port List (defines names, usually in module header)

00179 void LogicExtractor::handle(const slang::syntax::NonAnsiPortListSyntax &portList) {

00180 if (!inTargetModule_)

00181 return;

00182 spdlog::debug("LogicExtractor: Handling NonAnsi Port List");

00183

00184 for (const auto portSyntax : portList.ports) {

00185 if (!portSyntax)

00186 continue;

00187

00188 std::string portName = "";

00189 // Most common case: ImplicitNonAnsiPortSyntax contains the expression (usually just the name)

00190 if (auto implicitPort = portSyntax->as_if<slang::syntax::ImplicitNonAnsiPortSyntax>()) {

00191 if (implicitPort->expr) {

00192 // The expression itself might be complex, try to get the simple name

00193 if (auto portRef = implicitPort->expr->as_if<slang::syntax::PortReferenceSyntax>()) {

00194 if (portRef->name.valid()) {

00195 portName = std::string(portRef->name.valueText());

00196 }

00197 } else if (auto portConcat =

00198 implicitPort->expr->as_if<slang::syntax::PortConcatenationSyntax>()) {

00199 // Handle concatenations if necessary - complex

00200 spdlog::warn("LogicExtractor: Port concatenation found in NonAnsi port list - currently "

00201 "not fully handled for logic extraction. Port: {}",

00202 implicitPort->toString());

00203 continue; // Skip complex ports for now

00204 } else {

00205 // Fallback: try getting name from the expression directly (might be just identifier)

00206 portName = implicitPort->toString();

00207 }

00208 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 255

00209 }

00210 // Handle ExplicitNonAnsiPortSyntax (e.g., .A(A)) if needed

00211 else if (auto explicitPort = portSyntax->as_if<slang::syntax::ExplicitNonAnsiPortSyntax>()) {

00212 if (explicitPort->name.valid()) {

00213 portName = std::string(explicitPort->name.valueText());

00214 // Note: explicitPort->expr is the internal signal it connects to.

00215 // We are primarily interested in the port's own name (explicitPort->name) here.

00216 }

00217 }

00218 // Handle EmptyNonAnsiPortSyntax (commas for placeholders) if necessary

00219 else if (portSyntax->kind == slang::syntax::SyntaxKind::EmptyNonAnsiPort) {

00220 spdlog::debug("LogicExtractor: Skipping empty non-ANSI port placeholder.");

00221 continue;

00222 } else {

00223 spdlog::warn("LogicExtractor: Unhandled NonAnsi port syntax kind: {}",

00224 slang::syntax::toString(portSyntax->kind));

00225 continue;

00226 }

00227

00228 // Now we (hopefully) have the portName.

00229 if (!portName.empty()) {

00230 if (portDirections_.count(portName)) {

00231 const std::string &direction = portDirections_[portName];

00232 spdlog::debug("LogicExtractor: Finalizing port '{}' with direction '{}'", portName,

00233 direction);

00234

00235 if (direction == "input") {

00236 primaryInputs_.insert(portName);

00237 internalWires_.insert(portName); // Inputs are also technically 'wires' usable internally

00238 // logicCache_[portName] = portName; // For Step 2

00239 } else if (direction == "output") {

00240 primaryOutputs_.insert(portName);

00241 internalWires_.insert(portName); // Outputs are also wires driven by something

00242 } else if (direction == "inout") {

00243 spdlog::info("LogicExtractor: Inout port '{}' found. Adding to both inputs and outputs.",

00244 portName);

00245 primaryInputs_.insert(portName);

00246 primaryOutputs_.insert(portName);

00247 internalWires_.insert(portName);

00248 // logicCache_[portName] = portName; // For Step 2

00249 } else {

00250 spdlog::warn("LogicExtractor: Port '{}' found in list but has unknown or missing "

00251 "direction '{}'. Treating as internal wire.",

00252 portName, direction);

00253 internalWires_.insert(portName);

00254 }

00255 } else {

00256 spdlog::debug("LogicExtractor: Port '{}' found in NonAnsi list, no direction declaration ",

00257 portName);

00258 }

00259 } else {

00260 spdlog::warn("LogicExtractor: Could not determine port name from NonAnsi port list item: {}",

00261 portSyntax->toString());

00262 }

00263 }

00264 // Don't call visitDefault here

00265 }

00266

00267 // Handle explicit wire declarations

00277 void LogicExtractor::handle(const slang::syntax::NetDeclarationSyntax &netDecl) {

00278 if (!inTargetModule_)

00279 return;

00280

00281 for (const auto &declarator : netDecl.declarators) {

00282 if (declarator->name.valid()) {

00283 std::string wireName = std::string(declarator->name.valueText());

00284 spdlog::debug("LogicExtractor: Found wire declaration: {}", wireName);

00285 // Avoid adding ports again if they were also declared as nets (common)

00286 if (!primaryInputs_.count(wireName) && !primaryOutputs_.count(wireName)) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

256 File Documentation

00287 internalWires_.insert(wireName);

00288 } else {

00289 spdlog::trace("LogicExtractor: Wire '{}' is already known as a port.", wireName);

00290 }

00291 }

00292 }

00293 // Don't call visitDefault here

00294 }

00295

00296 // Handle primitive gate instantiations (MOST IMPORTANT PART)

00309 void LogicExtractor::handle(const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst) {

00310 if (!inTargetModule_)

00311 return;

00312

00313 if (!primitiveInst.type.valid()) {

00314 spdlog::warn("LogicExtractor: Primitive instance without a type token found.");

00315 return;

00316 }

00317

00318 // Use token kind for reliable checking, text for name storage

00319 slang::parsing::TokenKind gateKind = primitiveInst.type.kind;

00320 std::string gateTypeName = std::string(primitiveInst.type.valueText());

00321

00322 spdlog::debug("LogicExtractor: Found Primitive Instance of Type: {} (Kind: {})", gateTypeName,

00323 slang::parsing::toString(gateKind));

00324

00325 for (const auto &instance : primitiveInst.instances) {

00326 // if (!instance || !instance->connections.isInitialized()) { // Check if connections are valid

00327 // spdlog::warn("LogicExtractor: Skipping primitive instance of type {} due to null pointer or

00328 // "

00329 // "uninitialized connections.",

00330 // gateTypeName);

00331 // continue;

00332 // }

00333

00334 GateInfo currentGateInfo;

00335 currentGateInfo.gateTypeName = gateTypeName;

00336 currentGateInfo.kind = gateKind;

00337

00338 // Primitives usually have ordered connections.

00339 // The FIRST connection is typically the OUTPUT.

00340 // The REST are INPUTS.

00341 if (instance->connections.empty()) {

00342 spdlog::warn("LogicExtractor: Gate instance of type {} has no connections.", gateTypeName);

00343 continue;

00344 }

00345

00346 // Extract Output Signal

00347 // Ensure the connection itself is not null

00348 if (!instance->connections[0]) {

00349 spdlog::error("LogicExtractor: First connection (output) is null for primitive {}",

00350 gateTypeName);

00351 continue;

00352 }

00353 if (auto firstConn =

00354 instance->connections[0]->as_if<slang::syntax::OrderedPortConnectionSyntax>()) {

00355 currentGateInfo.outputSignal =

00356 firstConn->expr->toString(); // Get the output signal name from the connection

00357 // remove extra spaces in the signal name

00358 currentGateInfo.outputSignal.erase(

00359 std::remove_if(currentGateInfo.outputSignal.begin(), currentGateInfo.outputSignal.end(),

00360 [](unsigned char x) { return std::isspace(x); }),

00361 currentGateInfo.outputSignal.end());

00362 if (!currentGateInfo.outputSignal.empty()) {

00363 spdlog::debug(" Output Signal: {}", currentGateInfo.outputSignal);

00364 // Gate outputs are internal signals (unless they are module outputs)

00365 // Add to internal wires if not already a primary output.

00366 if (!primaryOutputs_.count(currentGateInfo.outputSignal)) {

00367 internalWires_.insert(currentGateInfo.outputSignal);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 257

00368 }

00369 } else {

00370 spdlog::error(

00371 "LogicExtractor: Could not determine output signal name for gate instance of type {}",

00372 gateTypeName);

00373 continue; // Skip this instance if output is unknown

00374 }

00375 } else {

00376 spdlog::error("LogicExtractor: Expected OrderedPortConnectionSyntax for output of primitive "

00377 "{}, but got kind: {}. Conn: {}",

00378 gateTypeName, slang::syntax::toString(instance->connections[0]->kind),

00379 instance->connections[0]->toString());

00380 continue; // Skip this instance

00381 }

00382

00383 // Extract Input Signals

00384 for (size_t i = 1; i < instance->connections.size(); ++i) {

00385 // Ensure the connection itself is not null

00386 if (!instance->connections[i]) {

00387 spdlog::warn("LogicExtractor: Input connection {} is null for primitive {}", i,

00388 gateTypeName);

00389 continue;

00390 }

00391 if (auto conn =

00392 instance->connections[i]->as_if<slang::syntax::OrderedPortConnectionSyntax>()) {

00393 std::string inputSig =

00394 conn->expr->toString(); // Get the input signal name from the connection

00395 // remove extra spaces in the signal name

00396 inputSig.erase(std::remove_if(inputSig.begin(), inputSig.end(),

00397 [](unsigned char x) { return std::isspace(x); }),

00398 inputSig.end());

00399 if (!inputSig.empty()) {

00400 currentGateInfo.inputSignals.push_back(inputSig);

00401 spdlog::debug(" Input Signal {}: {}", i, inputSig);

00402 } else {

00403 spdlog::warn("LogicExtractor: Could not determine input signal name for input {} of gate "

00404 "instance type {}. Conn: {}",

00405 i, gateTypeName, conn->toString());

00406 // Decide whether to skip or continue with partial inputs

00407 }

00408 } else {

00409 spdlog::warn("LogicExtractor: Expected OrderedPortConnectionSyntax for input {} of "

00410 "primitive {}, but got kind: {}. Conn: {}",

00411 i, gateTypeName, slang::syntax::toString(instance->connections[i]->kind),

00412 instance->connections[i]->toString());

00413 }

00414 }

00415

00416 // Store the gate information, mapping the output signal to its driving gate

00417 if (!currentGateInfo.outputSignal.empty()) {

00418 if (gateOutputDrivers_.count(currentGateInfo.outputSignal)) {

00419 // This is a critical warning - indicates multiple drivers for the same net!

00420 spdlog::error("LogicExtractor: Multiple drivers found for signal '{}'! Previous driver: "

00421 "{}, New driver: {}. Netlist is likely invalid.",

00422 currentGateInfo.outputSignal,

00423 gateOutputDrivers_[currentGateInfo.outputSignal].gateTypeName, gateTypeName);

00424 // Keep the first one found for now, or decide on error handling

00425 } else {

00426 spdlog::info(" Storing driver for '{}': Gate Type '{}'", currentGateInfo.outputSignal,

00427 gateTypeName);

00428 gateOutputDrivers_[currentGateInfo.outputSignal] = currentGateInfo;

00429 }

00430 }

00431 }

00432 // Don't call visitDefault here

00433 }

00434

00435 // --- Logic Derivation Implementation ---

00436

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

258 File Documentation

00437 // Public method called after visiting the tree

00451 std::map<std::string, std::string> LogicExtractor::getLogicExpressions() {

00452 std::map<std::string, std::string> result_map;

00453 if (!parsingComplete_) {

00454 spdlog::error("LogicExtractor: AST parsing did not complete or target module '{}' not found. "

00455 "Cannot extract logic.",

00456 targetCell_);

00457 return result_map; // Return empty map

00458 }

00459

00460 spdlog::info("LogicExtractor: Deriving logic expressions for {} output ports...",

00461 primaryOutputs_.size());

00462

00463 for (const std::string &outputPort : primaryOutputs_) {

00464 spdlog::debug("LogicExtractor: Deriving logic for output: {}", outputPort);

00465 try {

00466 result_map[outputPort] = deriveLogicRecursive(outputPort);

00467 spdlog::info(" Output: {} => {}", outputPort, result_map[outputPort]);

00468 } catch (const std::runtime_error &e) {

00469 spdlog::error("LogicExtractor: Error deriving logic for output '{}': {}", outputPort,

00470 e.what());

00471 result_map[outputPort] = "/* Error deriving logic */";

00472 } catch (...) {

00473 spdlog::error("LogicExtractor: Unknown error deriving logic for output '{}'", outputPort);

00474 result_map[outputPort] = "/* Unknown error deriving logic */";

00475 }

00476 }

00477 return result_map;

00478 }

00479

00480 // Recursive function with memoization

00510 std::string LogicExtractor::deriveLogicRecursive(const std::string &signalName) {

00511 // 1. Check Cache (Memoization)

00512 if (logicCache_.count(signalName)) {

00513 return logicCache_.at(signalName);

00514 }

00515

00516 // 2. Base Case: Is it a primary input?

00517 if (primaryInputs_.count(signalName)) {

00518 // Already cached during port handling, but double-check

00519 if (!logicCache_.count(signalName)) {

00520 logicCache_[signalName] = signalName;

00521 }

00522 return signalName;

00523 }

00524

00525 // 3. Recursive Step: Is it driven by a gate?

00526 if (gateOutputDrivers_.count(signalName)) {

00527 const GateInfo &driverGate = gateOutputDrivers_.at(signalName);

00528 std::vector<std::string> inputExpressions;

00529 spdlog::debug(" Tracing signal '{}', driven by {} gate", signalName,

00530 driverGate.gateTypeName);

00531

00532 // Recursively find expressions for all inputs of this gate

00533 for (const std::string &inputSig : driverGate.inputSignals) {

00534 if (inputSig.empty()) {

00535 throw std::runtime_error("Empty input signal name encountered for gate driving " +

00536 signalName);

00537 }

00538 spdlog::debug(" Recursing for input: {}", inputSig);

00539 inputExpressions.push_back(deriveLogicRecursive(inputSig));

00540 }

00541

00542 // Format the expression based on gate type and input expressions

00543 std::string currentExpr = formatExpression(driverGate, inputExpressions);

00544

00545 // Cache the result

00546 logicCache_[signalName] = currentExpr;

00547 return currentExpr;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.42 LogicExtractor.cpp 259

00548 }

00549

00550 // 4. Handle Assign statements (if implemented)

00551 // if (assignDrivers_.count(signalName)) { ... }

00552

00553 // 5. Error Case: Signal not found or not driven by known element

00554 // Check if it's just an internal wire that wasn't driven?

00555 if (internalWires_.count(signalName)) {

00556 throw std::runtime_error(

00557 "Signal '" + signalName +

00558 "' is an internal wire but has no identified driver (gate or assign).");

00559 } else {

00560 throw std::runtime_error(

00561 "Signal '" + signalName +

00562 "' is not a primary input, known wire, or driven by a recognized gate/assignment.");

00563 }

00564 }

00565

00566 // Helper to format the expression string based on gate type

00584 std::string LogicExtractor::formatExpression(const GateInfo &gateInfo,

00585 const std::vector<std::string> &inputExprs) {

00586 if (inputExprs.empty() && gateInfo.kind != slang::parsing::TokenKind::NotKeyword &&

00587 gateInfo.kind != slang::parsing::TokenKind::BufKeyword) {

00588 // Gates like AND/OR/XOR need inputs

00589 spdlog::warn("Gate type {} requires inputs, but none were provided/derived for output {}",

00590 gateInfo.gateTypeName, gateInfo.outputSignal);

00591 return "/*<Error: Missing Inputs for " + gateInfo.gateTypeName + ">*/";

00592 }

00593

00594 std::string result = "";

00595

00596 // Use gateInfo.type (enum) for reliable checking

00597 switch (gateInfo.kind) {

00598 case slang::parsing::TokenKind::AndKeyword:

00599 result = "(" + inputExprs[0];

00600 for (size_t i = 1; i < inputExprs.size(); ++i)

00601 result += " * " + inputExprs[i]; // Use * for AND

00602 result += ")";

00603 break;

00604 case slang::parsing::TokenKind::NandKeyword:

00605 result = "!(" + inputExprs[0];

00606 for (size_t i = 1; i < inputExprs.size(); ++i)

00607 result += " * " + inputExprs[i];

00608 result += ")";

00609 break;

00610 case slang::parsing::TokenKind::OrKeyword:

00611 result = "(" + inputExprs[0];

00612 for (size_t i = 1; i < inputExprs.size(); ++i)

00613 result += " + " + inputExprs[i]; // Use + for OR

00614 result += ")";

00615 break;

00616 case slang::parsing::TokenKind::NorKeyword:

00617 result = "!(" + inputExprs[0];

00618 for (size_t i = 1; i < inputExprs.size(); ++i)

00619 result += " + " + inputExprs[i];

00620 result += ")";

00621 break;

00622 case slang::parsing::TokenKind::XorKeyword:

00623 result = "(" + inputExprs[0];

00624 for (size_t i = 1; i < inputExprs.size(); ++i)

00625 result += " ^ " + inputExprs[i]; // Use ^ for XOR

00626 result += ")";

00627 break;

00628 case slang::parsing::TokenKind::XnorKeyword:

00629 result = "!(" + inputExprs[0];

00630 for (size_t i = 1; i < inputExprs.size(); ++i)

00631 result += " ^ " + inputExprs[i];

00632 result += ")";

00633 break;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

260 File Documentation

00634 case slang::parsing::TokenKind::NotKeyword: // NOT gate

00635 if (inputExprs.size() != 1) {

00636 spdlog::warn("NOT gate expects 1 input, got {}", inputExprs.size());

00637 return "/*<Error: Incorrect Inputs for NOT>*/";

00638 }

00639 result = "!" + inputExprs[0]; // Use ! for NOT

00640 break;

00641 case slang::parsing::TokenKind::BufKeyword: // BUF gate

00642 if (inputExprs.size() != 1) {

00643 spdlog::warn("BUF gate expects 1 input, got {}", inputExprs.size());

00644 return "/*<Error: Incorrect Inputs for BUF>*/";

00645 }

00646 result = inputExprs[0]; // Output is the same as input

00647 break;

00648 // Add cases for bufif0, bufif1, notif0, notif1, pullup, pulldown, cmos, nmos, pmos, tran etc. if

00649 // needed

00650 default:

00651 spdlog::warn("Unsupported primitive gate type for logic expression generation: {}",

00652 gateInfo.gateTypeName);

00653 result = "/*<Unsupported Gate: " + gateInfo.gateTypeName + ">*/";

00654 break;

00655 }

00656 return result;

00657 }

00658

00659 // --- New Function Implementation (Step 1: Visit and Print) ---

00660

00676 void extractAndPrintNetlistInfo(const std::string &verilog_file, const std::string &cell) {

00677 spdlog::info("--- Step 1: Starting Netlist Info Extraction ---");

00678 spdlog::info("Verilog file: '{}', Target cell: '{}'", verilog_file, cell);

00679

00680 try {

00681 auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);

00682 if (!result) { // Check if result is valid

00683 spdlog::error("Error parsing Verilog file '{}'. Cannot extract info.", verilog_file);

00684 return;

00685 }

00686

00687 spdlog::info("Successfully parsed Verilog file.");

00688 std::shared_ptr<slang::syntax::SyntaxTree> tree = result.value();

00689

00690 LogicExtractor extractor(cell);

00691 tree->root().visit(extractor); // Populate extractor's internal state

00692

00693 // --- Print Summary (Debug for Step 1) ---

00694 spdlog::info("--- Extraction Summary for Cell '{}': ---", cell);

00695

00696 const auto &inputs = extractor.getPrimaryInputs();

00697 spdlog::info("Found {} Primary Inputs:", inputs.size());

00698 for (const auto &name : inputs) {

00699 spdlog::info(" - {}", name);

00700 }

00701

00702 const auto &outputs = extractor.getPrimaryOutputs();

00703 spdlog::info("Found {} Primary Outputs:", outputs.size());

00704 for (const auto &name : outputs) {

00705 spdlog::info(" - {}", name);

00706 }

00707

00708 const auto &wires = extractor.getInternalWires();

00709 spdlog::info("Found {} Internal Wires:", wires.size());

00710 for (const auto &name : wires) {

00711 spdlog::info(" - {}", name);

00712 }

00713

00714 const auto &gates = extractor.getExtractedGates();

00715 spdlog::info("Found {} Gate Drivers:", gates.size());

00716 for (const auto &pair : gates) {

00717 const std::string &outputNet = pair.first;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.43 src/main.cpp File Reference 261

00718 const GateInfo &info = pair.second;

00719 std::string inputsStr = "";

00720 for (size_t i = 0; i < info.inputSignals.size(); ++i) {

00721 inputsStr += info.inputSignals[i] + (i == info.inputSignals.size() - 1 ? "" : ", ");

00722 }

00723 spdlog::info(" - Output: {} <= Driven by: {} ({}) Inputs: [{}]", outputNet,

00724 info.gateTypeName, slang::parsing::toString(info.kind), inputsStr);

00725 }

00726 spdlog::info("--- End Netlist Info Extraction ---");

00727

00728 } catch (const std::exception &e) {

00729 spdlog::error("Exception during Verilog parsing or info extraction: {}", e.what());

00730 } catch (...) {

00731 spdlog::error("Unknown exception during Verilog parsing or info extraction.");

00732 }

00733 }

00734

00735 // --- (Step 2: Extract Logic Expressions) ---

00736

00755 std::map<std::string, std::string> extractLogicFromVerilog(const std::string &verilog_file,

00756 const std::string &cell) {

00757 spdlog::info("--- Starting Logic Expression Extraction for cell: '{}' ---", cell);

00758 std::map<std::string, std::string> logicMap; // Default empty map

00759

00760 try {

00761 auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);

00762 if (!result) {

00763 spdlog::error("Error parsing Verilog file '{}'. Cannot extract logic.", verilog_file);

00764 return logicMap;

00765 }

00766

00767 spdlog::info("Successfully parsed Verilog file.");

00768 std::shared_ptr<slang::syntax::SyntaxTree> tree = result.value();

00769

00770 LogicExtractor extractor(cell);

00771 tree->root().visit(extractor); // Populate extractor's internal state

00772

00773 // Now, call the method to derive and get the expressions

00774 logicMap = extractor.getLogicExpressions();

00775

00776 } catch (const std::exception &e) {

00777 spdlog::error("Exception during Verilog parsing or logic extraction: {}", e.what());

00778 } catch (...) {

00779 spdlog::error("Unknown exception during Verilog parsing or logic extraction.");

00780 }

00781

00782 if (logicMap.empty()) {

00783 spdlog::warn("Logic extraction finished, but no expressions were derived for cell '{}'. Check "

00784 "if cell exists and is correctly defined.",

00785 cell);

00786 } else {

00787 spdlog::info("Logic extraction completed for cell '{}'. Found {} output expression strings",

00788 cell, logicMap.size());

00789 }

00790

00791 spdlog::info("--- End Logic Expression Extraction ---");

00792 return logicMap;

00793 }

7.43 src/main.cpp File Reference

This file contains the main function for the ZlibValidation tool.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

262 File Documentation

#include "CLI/CLI.hpp"

#include "LibFileOperations.hpp"

#include "version.h"

Include dependency graph for main.cpp:

src/main.cpp

CLI/CLI.hpp LibFileOperations.hpp

version.hfilesystem

iostream thread

si2dr_liberty.h

spdlog/sinks/basic
_file_sink.h

spdlog/sinks/stdout
_color_sinks.h

spdlog/spdlog.h

LibFile.hpp

LibraryComparator.hpp

LogicComparator.hppLogicExtractor.hpp

chrono

fstream

string

unordered_set nlohmann/json.hppIterators.hpp

json_utils.hppverilog_utils.hpp

LibAttribute.hpp LibGroup.hpp

unordered_map slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h

tabulate/table.hpp tabulate/markdown_exporter.hpp algorithm cmath iomanip optionalregex variant exprtk.hpp

Functions

• int main (int argc, char ∗argv[])

7.43.1 Detailed Description

This file contains the main function for the ZlibValidation tool.

The ZlibValidation tool is a command-line application that provides several functionalities for processing
and validating Liberty files, including parsing, monotonicity checking, comparison, supercell generation,
Verilog/SPICE netlist generation, functional equivalence check, and a utility to clear generated files. It
uses the CLI11 library for command-line argument parsing and spdlog for logging.

The main function parses command-line arguments using CLI11 to determine the desired operation and
its parameters. It then calls the appropriate functions to perform the requested task. The tool supports
processing multiple Liberty files in parallel using multi-threading for monotonicity checking, supercell
generation, Verilog generation, and SPICE generation.

Parameters

argc The number of command-line arguments.
argv An array of command-line argument strings.

Returns

0 if the program executes successfully, or an error code otherwise.

The main function performs the following steps:

1. Initializes command-line argument parsing using CLI11.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.43 src/main.cpp File Reference 263

2. Defines subcommands for each supported operation:

• parse: Parses a Liberty file and writes JSON to a file.

• mono: Checks the monotonicity of timing arc values in a Liberty file.

• compare: Compares two Liberty files and reports differences.

• supercell: Generates supercells for a given Liberty file.

• zlibboost: Runs the ZlibBoost tool for multi-threaded library processing.

• clear: Clears log, JSON, map, markdown, Verilog, and SPICE files in the current directory.

• verilog: Generates Verilog netlist for a given Liberty file.

• spice: Generates SPICE netlist for a given Liberty file.

• func: Checks functional equivalence of two Liberty or Verilog files.

3. Parses the command-line arguments using CLI11.

4. Calls the appropriate function based on the selected subcommand.

5. Logs the program's exit status and timestamp.

Note

The tool relies on external libraries such as CLI11, spdlog, and potentially others depending on the
specific operation being performed. Ensure that these libraries are properly installed and configured
before running the tool.

Definition in file main.cpp.

7.43.2 Function Documentation

7.43.2.1 main()

int main (

int argc,

char ∗ argv[])

Definition at line 49 of file main.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

264 File Documentation

Here is the call graph for this function:

main

compareLibFiles

funcLibFile

monoCheckLibFile

parseLibFile

printInfo

spiceLibFile

supercellLibFile

verilogLibFile

LibraryComparator::
generateReport

LibraryComparator::
compareCell

LibraryComparator::
comparePin

LogicComparator::compare
CellLogic

extractLogicFromVerilog

LogicComparator::generate
Report

LogicComparator::logic

LibFile::logic

LogicComparator::compare
SingleExpressionPair

LogicComparator::extract
Variables

LogicComparator::preprocess
Expression

isIdentifier

isOperator

LogicExtractor::getLogic
Expressions

LogicExtractor::deriveLogic
Recursive

LibFile::parse

LibFile::writeJsonToFile

GroupsIterator::end

AttributesIterator::end

generateCellJson

GroupsIterator::get

AttributesIterator::get

LibGroup::getAttrs

LibAttribute::getFloat

LibGroup::getGroups

LibAttribute::getName

LibGroup::getName

LibAttribute::getString

LibGroup::getType

GroupsIterator::next

AttributesIterator
::next

LibAttribute::getInt

LibFile::read generatePinJson

LibFile::mono LibFile::checkTimingArcMonotonicity

LibFile::spice LibFile::modifySpiceNetlist

LibFile::verilog

LibFile::generateRCLines

LibFile::supercell

7.44 main.cpp

Go to the documentation of this file.
00001 // ./src/main.cpp

00002

00003 #include "CLI/CLI.hpp"

00004

00005 #include "LibFileOperations.hpp"

00006 #include "version.h"

00007

00049 int main(int argc, char *argv[]) {

00050 // Parse command line arguments

00051 std::vector<std::string> library_paths; // Support multiple files

00052 std::string log_file_name = "";

00053

00054 // Command line parameter parsing using CLI11

00055 CLI::App app{APP_NAME};

00056 app.set_version_flag("-v,--version", APP_VERSION);

00057

00058 // Add subcommand for parse mode

00059 CLI::App *parse_cmd =

00060 app.add_subcommand("parse", "Parse the Liberty file and write JSON to a file");

00061 parse_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00062 ->check(CLI::ExistingFile)

00063 ->required();

00064 parse_cmd->add_option("-l,--log", log_file_name,

00065 "Specify the log file name. Default: <basename>.parse.log");

00066 parse_cmd->callback([&] {

00067 printInfo();

00068 // Check if multi files

00069 if (library_paths.size() > 1) {

00070 spdlog::info("Running sequential parsing for {} files.", library_paths.size());

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.44 main.cpp 265

00071 spdlog::info("Each library will write to its own log file.");

00072 // Sequential parsing

00073 for (const auto &library_path : library_paths) {

00074 parseLibFile(library_path, log_file_name = "");

00075 }

00076 } else {

00077 parseLibFile(library_paths[0], log_file_name);

00078 }

00079 });

00080

00081 // Add subcommand for mono check mode

00082 bool is_slew = false;

00083 CLI::App *mono_cmd = app.add_subcommand("mono", "Check the monotonicity of timing arc values");

00084 mono_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00085 ->check(CLI::ExistingFile)

00086 ->required();

00087 mono_cmd->add_option("-l,--log", log_file_name,

00088 "Specify the log file name. Default: <basename>.mono.log");

00089 mono_cmd->add_flag("-s,--slew", is_slew,

00090 "Specify that monotonicity checks also include input slew.");

00091 mono_cmd->callback([&] {

00092 printInfo();

00093 // Check if multi files

00094 if (library_paths.size() > 1) {

00095 spdlog::info("Running multi-threaded monotonicity check for {} files.", library_paths.size());

00096 spdlog::info("Each thread will write to its own log file.");

00097

00098 // Sequential json file check

00099 for (const auto &library_path : library_paths) {

00100 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

00101 ".json")) {

00102 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);

00103 parseLibFile(library_path, log_file_name = "");

00104 }

00105 }

00106 spdlog::info("All JSON files prepared.");

00107 // Parallel monotonicity check

00108 std::vector<std::thread> threads;

00109 for (const auto &library_path : library_paths) {

00110 threads.emplace_back(monoCheckLibFile, library_path, log_file_name = "", is_slew);

00111 }

00112 for (auto &thread : threads) {

00113 thread.join();

00114 }

00115 spdlog::info("All threads completed.");

00116 } else {

00117 monoCheckLibFile(library_paths[0], log_file_name, is_slew);

00118 }

00119 });

00120

00121 // Add subcommand for compare mode

00122 std::string ref_lib, comp_lib, report_file_name;

00123 CLI::App *compare_cmd = app.add_subcommand(

00124 "compare", "Compare the comparison library against the reference one and report differences");

00125 compare_cmd->add_option("--ref", ref_lib, "Specify the reference library file")

00126 ->check(CLI::ExistingFile)

00127 ->required();

00128 compare_cmd->add_option("--comp", comp_lib, "Specify the comparison library file")

00129 ->check(CLI::ExistingFile)

00130 ->required();

00131 double abstol = 0.002;

00132 compare_cmd->add_option("--abstol", abstol,

00133 "Specify the absolute tolerance for comparison. Default: 0.002ns");

00134 double reltol = 0.02;

00135 compare_cmd->add_option("--reltol", reltol,

00136 "Specify the relative tolerance for comparison. Default: 0.02/2.0%");

00137 compare_cmd->add_option("--report", report_file_name,

00138 "Specify the report file name. Default: <comp_lib>.cmp.md");

00139 compare_cmd->callback([&] {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

266 File Documentation

00140 printInfo();

00141 compareLibFiles(ref_lib, comp_lib, reltol, abstol, report_file_name);

00142 });

00143

00144 // Add subcommand for supercell generation

00145 int chain_length = 1;

00146 CLI::App *supercell_cmd =

00147 app.add_subcommand("supercell", "Generate supercells for the given Liberty file");

00148 supercell_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00149 ->check(CLI::ExistingFile)

00150 ->required();

00151 supercell_cmd->add_option("-l,--log", log_file_name,

00152 "Specify the log file name. Default: <basename>.supercell.log");

00153 supercell_cmd->add_option("-c,--chain", chain_length,

00154 "Specify the chain length for supercell generation. Default: 1");

00155 std::vector<std::string> cell_names = {}; // "CMPE42D1" "AN2D0", "DFQD1"

00156 supercell_cmd->add_option("--cells", cell_names,

00157 "Specify the cell names to generate supercells for");

00158 supercell_cmd->callback([&] {

00159 printInfo();

00160 // Check if multi files

00161 if (library_paths.size() > 1) {

00162 spdlog::info("Running multi-threaded supercell generation for {} files.",

00163 library_paths.size());

00164 spdlog::info("Each library will write to its own log file.");

00165

00166 // Sequential json file check

00167 for (const auto &library_path : library_paths) {

00168 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

00169 ".json")) {

00170 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);

00171 parseLibFile(library_path, log_file_name = "");

00172 }

00173 }

00174 spdlog::info("All JSON files prepared.");

00175 // Parallel supercell generation

00176 std::vector<std::thread> threads;

00177 for (const auto &library_path : library_paths) {

00178 threads.emplace_back(supercellLibFile, library_path, log_file_name = "", chain_length,

00179 cell_names);

00180 }

00181 for (auto &thread : threads) {

00182 thread.join();

00183 }

00184 spdlog::info("All threads completed.");

00185 } else {

00186 supercellLibFile(library_paths[0], log_file_name, chain_length, cell_names);

00187 }

00188 });

00189

00190 // Add subcommand for zlibboost

00191 CLI::App *zlibboost_cmd =

00192 app.add_subcommand("zlibboost", "ZlibBoost - Multi-threaded Library Processing Tool");

00193 std::string config_dir = "/home/songzx/Projects/zlibboost/config.tcl";

00194 std::string python_dir = "/home/guocj/anaconda3/envs/myenv/bin/python";

00195 std::string main_py_dir = "/home/songzx/Projects/zlibboost/zlibboost.py";

00196 zlibboost_cmd->add_option(

00197 "-c, --config", config_dir,

00198 "Specify the configuration TCL file. Default: /home/songzx/Projects/zlibboost/config.tcl");

00199 zlibboost_cmd->add_option(

00200 "--python", python_dir,

00201 "Specify the python directory. Default: /home/guocj/anaconda3/envs/myenv/bin/python");

00202 zlibboost_cmd->add_option("--main", main_py_dir,

00203 "Specify the main python script directory. Default: "

00204 "/home/songzx/Projects/zlibboost/zlibboost.py");

00205 zlibboost_cmd->callback([&] {

00206 printInfo();

00207 // Run the ZlibBoost tool

00208 std::string command = python_dir + " " + main_py_dir + " -c " + config_dir;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.44 main.cpp 267

00209 spdlog::info("Running ZlibBoost with command: '{}'", command);

00210 int ret = std::system(command.c_str());

00211 if (ret == 0) {

00212 spdlog::info("ZlibBoost completed successfully.");

00213 } else {

00214 spdlog::error("ZlibBoost failed with return code: {}", ret);

00215 }

00216 });

00217

00218 // Add subcommand for clear

00219 CLI::App *clear_cmd = app.add_subcommand(

00220 "clear", "Clear the log, JSON, map, markdown, Verilog, SPICE files in this directory");

00221 clear_cmd->callback([&] {

00222 printInfo();

00223 std::filesystem::path current_dir = std::filesystem::current_path();

00224 for (const auto &entry : std::filesystem::directory_iterator(current_dir)) {

00225 if (entry.path().extension() == ".log" || entry.path().extension() == ".json" ||

00226 entry.path().extension() == ".map" || entry.path().extension() == ".md" ||

00227 entry.path().extension() == ".v" || entry.path().extension() == ".spi") {

00228 spdlog::info("Removing file: '{}'", entry.path().string());

00229 std::filesystem::remove(entry.path());

00230 }

00231 }

00232 spdlog::info("All log, JSON, map, markdown files cleared.");

00233 });

00234

00235 // Add subcommand for Verilog generation

00236 CLI::App *verilog_cmd =

00237 app.add_subcommand("verilog", "Generate Verilog file for given Liberty file");

00238 verilog_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00239 ->check(CLI::ExistingFile)

00240 ->required();

00241 verilog_cmd->add_option("-l,--log", log_file_name,

00242 "Specify the log file name. Default: <basename>.verilog.log");

00243 verilog_cmd->add_option("-c,--chain", chain_length,

00244 "Specify the chain length for verilog generation. Default: 1");

00245 verilog_cmd->add_option("--cells", cell_names, "Specify the cell names to generate Verilog for");

00246 verilog_cmd->callback([&] {

00247 printInfo();

00248 // Check if multi files

00249 if (library_paths.size() > 1) {

00250 spdlog::info("Running multi-threaded Verilog generation for {} files.", library_paths.size());

00251 spdlog::info("Each library will write to its own log file.");

00252

00253 // Sequential json file check

00254 for (const auto &library_path : library_paths) {

00255 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

00256 ".json")) {

00257 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);

00258 parseLibFile(library_path, log_file_name = "");

00259 }

00260 }

00261 spdlog::info("All JSON files prepared.");

00262 // Parallel Verilog generation

00263 std::vector<std::thread> threads;

00264 for (const auto &library_path : library_paths) {

00265 threads.emplace_back(verilogLibFile, library_path, log_file_name = "", chain_length,

00266 cell_names);

00267 }

00268 for (auto &thread : threads) {

00269 thread.join();

00270 }

00271 spdlog::info("All threads completed.");

00272 } else {

00273 verilogLibFile(library_paths[0], log_file_name, chain_length, cell_names);

00274 }

00275 });

00276

00277 // Add subcommand for SPICE generation

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

268 File Documentation

00278 CLI::App *spice_cmd = app.add_subcommand("spice", "Generate SPICE file for given Liberty file");

00279 spice_cmd->add_option("library_path", library_paths, "Specify the library file to process")

00280 ->check(CLI::ExistingFile)

00281 ->required();

00282 spice_cmd->add_option("-l,--log", log_file_name,

00283 "Specify the log file name. Default: <basename>.spice.log");

00284 spice_cmd->add_option("-c,--chain", chain_length,

00285 "Specify the chain length for SPICE generation. Default: 1");

00286 spice_cmd->add_option("--cells", cell_names, "Specify the cell names to generate SPICE for");

00287 std::string verilog_lib_file =

00288 "/home/songzx/examples/mypdk/TSMC65/TSMC65NM_CLN65LP_STDIO_STDCELL/tcbn65lp_220a/"

00289 "0396011_20170308/TSMCHOME/digital/Front_End/verilog/tcbn65lp.v";

00290 std::string spice_lib_file =

00291 "/home/songzx/examples/mypdk/TSMC65/TSMC65NM_CLN65LP_STDIO_STDCELL/tcbn65lp_220a/"

00292 "0396011_20170308/TSMCHOME/digital/Back_End/lpe_spice/tcbn65lp_200a/tcbn65lp_200a_lpe.spi";

00293 spice_cmd->add_option("--vl", verilog_lib_file,

00294 "Specify the location of the Verilog primitive library file");

00295 spice_cmd->add_option(

00296 "--sl", spice_lib_file,

00297 "Specify the location of the SPICE library file to be included in the output");

00298 spice_cmd->callback([&] {

00299 printInfo();

00300 // Check if multi files

00301 if (library_paths.size() > 1) {

00302 spdlog::info("Running multi-threaded SPICE generation for {} files.", library_paths.size());

00303 spdlog::info("Each library will write to its own log file.");

00304

00305 // Sequential json file check

00306 for (const auto &library_path : library_paths) {

00307 if (!std::filesystem::exists(std::filesystem::path(library_path).stem().string() +

00308 ".json")) {

00309 spdlog::info("JSON file not found for '{}'. Parsing Liberty file first.", library_path);

00310 parseLibFile(library_path, log_file_name = "");

00311 }

00312 }

00313 spdlog::info("All JSON files prepared.");

00314 // Parallel SPICE generation

00315 std::vector<std::thread> threads;

00316 for (const auto &library_path : library_paths) {

00317 threads.emplace_back(spiceLibFile, library_path, log_file_name = "", chain_length,

00318 cell_names, verilog_lib_file, spice_lib_file);

00319 }

00320 for (auto &thread : threads) {

00321 thread.join();

00322 }

00323 spdlog::info("All threads completed.");

00324 } else {

00325 spiceLibFile(library_paths[0], log_file_name, chain_length, cell_names, verilog_lib_file,

00326 spice_lib_file);

00327 }

00328 });

00329

00330 // Add subcommand for funtional equivalence check

00331 CLI::App *func_cmd = app.add_subcommand(

00332 "func", "Check functional equivalence of two Liberty files or Verilog files");

00333 std::string ref_file, comp_file;

00334 func_cmd->add_option("--ref", ref_file, "Specify the reference Liberty or Verilog file")

00335 ->check(CLI::ExistingFile)

00336 ->required();

00337 func_cmd->add_option("--comp", comp_file, "Specify the comparison Liberty or Verilog file")

00338 ->check(CLI::ExistingFile)

00339 ->required();

00340 func_cmd->add_option("--cells", cell_names,

00341 "Specify the cell names to check functional equivalence for");

00342 func_cmd->add_option("--report", report_file_name,

00343 "Specify the report file name. Default: <comp_lib>.cmp.md");

00344

00345 func_cmd->callback([&] {

00346 printInfo();

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.45 src/verilog_utils.cpp File Reference 269

00347 funcLibFile(ref_file, comp_file, cell_names, report_file_name);

00348 });

00349

00350 CLI11_PARSE(app, argc, argv);

00351

00352 // End of program

00353 char hostname[256];

00354 gethostname(hostname, sizeof(hostname));

00355

00356 auto now = std::chrono::system_clock::now();

00357 auto time_now = std::chrono::system_clock::to_time_t(now);

00358 std::stringstream ss;

00359 ss << std::put_time(std::localtime(&time_now), "%c");

00360

00361 spdlog::info("ZlibValidation exited on '{}' at {}", hostname, ss.str());

00362 return 0;

00363 }

7.45 src/verilog_utils.cpp File Reference

#include "verilog_utils.hpp"

Include dependency graph for verilog_utils.cpp:

src/verilog_utils.cpp

verilog_utils.hpp

fstream unordered_map unordered_set slang/syntax/SyntaxPrinter.h slang/syntax/SyntaxVisitor.h spdlog/spdlog.h

Functions

• void getAST (const std::string &verilog_file, const std::string &cell)

7.45.1 Function Documentation

7.45.1.1 getAST()

void getAST (

const std::string & verilog_file,

const std::string & cell)

Definition at line 544 of file verilog_utils.cpp.

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

270 File Documentation

Here is the call graph for this function:

getAST CellExtractor::foundTargetCell

7.46 verilog_utils.cpp

Go to the documentation of this file.
00001 // verilog_utils.cpp

00002

00003 #include "verilog_utils.hpp"

00004

00005 // Adding a generic handler method to record all visited nodes and increment the depth counter

00006 void VerilogVisitor::handle(const slang::syntax::SyntaxNode &node) {

00007 std::string indent(depth_ * 2, ' ');

00008 spdlog::debug("{}Node: {}", indent, slang::syntax::toString(node.kind));

00009

00010 // Increase depth, visit child nodes, then decrease depth

00011 depth_++;

00012 visitDefault(node);

00013 depth_--;

00014 }

00015

00016 // Handle module declarations

00017 void VerilogVisitor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

00018 std::string indent(depth_ * 2, ' ');

00019

00020 if (module.header && module.header->name.valid()) {

00021 std::string_view moduleName = module.header->name.valueText();

00022 spdlog::debug("{}Module Name:{}", indent, moduleName);

00023

00024 inTargetModule_ = !targetCell_.empty() && moduleName == targetCell_;

00025 if (!inTargetModule_) {

00026 return;

00027 }

00028

00029 // If a specific module name is specified, check if it matches

00030 if (inTargetModule_) {

00031 spdlog::info("{}Found target module: {}", indent, targetCell_);

00032 // Print the module ports

00033 if (module.header->ports) {

00034 spdlog::info("{}Ports: {}", indent, module.header->ports->toString());

00035 }

00036 }

00037 }

00038

00039 // Continue processing child nodes

00040 depth_++;

00041 visitDefault(module);

00042 depth_--;

00043 }

00044

00045 // Handle port declarations

00046 void VerilogVisitor::handle(const slang::syntax::PortDeclarationSyntax &portDecl) {

00047 if (!inTargetModule_) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog_utils.cpp 271

00048 return;

00049 }

00050

00051 std::string indent = std::string(depth_ * 2, ' ');

00052

00053 // Get port direction

00054 std::string direction = "unknown";

00055 if (portDecl.header) {

00056 // Try to convert the header to different types of port headers

00057 if (auto *varPort = portDecl.header->as_if<slang::syntax::VariablePortHeaderSyntax>()) {

00058 if (varPort->direction) {

00059 direction = varPort->direction.valueText();

00060 }

00061 } else if (auto *netPort = portDecl.header->as_if<slang::syntax::NetPortHeaderSyntax>()) {

00062 if (netPort->direction) {

00063 direction = netPort->direction.valueText();

00064 }

00065 }

00066

00067 // Get port name

00068 for (const auto &declarator : portDecl.declarators) {

00069 if (declarator->name.valid()) {

00070 std::string_view portName = declarator->name.valueText();

00071 spdlog::info("{}Port Name: {} ({})", indent, portName, direction);

00072 }

00073 }

00074 }

00075 }

00076

00077 // Handle hierarchical instantiation (module instance)

00078 void VerilogVisitor::handle(const slang::syntax::HierarchyInstantiationSyntax &hierarchyInst) {

00079 if (!inTargetModule_) {

00080 return;

00081 }

00082

00083 std::string indent(depth_ * 2, ' ');

00084

00085 if (hierarchyInst.type.valid()) {

00086 std::string_view instType = hierarchyInst.type.valueText();

00087 spdlog::info("{}Hierarchy Instance Type: {}", indent, instType);

00088

00089 // Safely print parameter values (if any)

00090 try {

00091 if (hierarchyInst.parameters) {

00092 spdlog::info("{}Parameters:", indent);

00093 for (const auto ¶m : hierarchyInst.parameters->parameters) {

00094 if (!param)

00095 continue; // Null pointer check

00096

00097 if (auto *orderedParam = param->as_if<slang::syntax::OrderedParamAssignmentSyntax>()) {

00098 if (orderedParam->expr) {

00099 spdlog::info("{} Parameter: {}", indent, orderedParam->expr->toString());

00100 }

00101 } else if (auto *namedParam = param->as_if<slang::syntax::NamedParamAssignmentSyntax>()) {

00102 if (namedParam->name.valid() && namedParam->expr) {

00103 spdlog::info("{} Parameter {}: {}", indent, namedParam->name.valueText(),

00104 namedParam->expr->toString());

00105 }

00106 }

00107 }

00108 }

00109 } catch (const std::exception &e) {

00110 spdlog::warn("{}Exception while processing parameters: {}", indent, e.what());

00111 }

00112

00113 // Safely handle instances

00114 try {

00115 for (const auto &instance : hierarchyInst.instances) {

00116 if (!instance) {

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

272 File Documentation

00117 spdlog::warn("{}Invalid instance", indent);

00118 continue;

00119 } else if (!instance->decl) {

00120 spdlog::warn("{}Invalid instance declaration", indent);

00121 // continue;

00122 } else {

00123 try {

00124 if (instance->decl->name.valid()) {

00125 std::string_view instName = instance->decl->name.valueText();

00126 spdlog::info("{}Instance Name: {}", indent, instName);

00127 }

00128 } catch (...) {

00129 spdlog::debug("{}Error printing name", indent);

00130 }

00131

00132 // Safely print dimensions

00133 try {

00134 if (!instance->decl->dimensions.empty()) {

00135 spdlog::info("{} Dimensions: {}", indent, instance->decl->dimensions.toString());

00136 }

00137 } catch (...) {

00138 spdlog::debug("{}Error printing dimensions", indent);

00139 }

00140 }

00141

00142 // Safely print port connections

00143 spdlog::info("{} Port connections:", indent);

00144 for (const auto &conn : instance->connections) {

00145 if (!conn) {

00146 spdlog::warn("{} Null connection", indent);

00147 continue; // Null pointer check

00148 }

00149

00150 try {

00151 // Use as_if method for safe type conversion

00152 if (auto *ordered = conn->as_if<slang::syntax::OrderedPortConnectionSyntax>()) {

00153 if (ordered->expr) {

00154 spdlog::info("{} Ordered connection: {}", indent, ordered->expr->toString());

00155 } else {

00156 spdlog::info("{} Ordered connection: <empty>", indent);

00157 }

00158 } else if (auto *named = conn->as_if<slang::syntax::NamedPortConnectionSyntax>()) {

00159 if (named->name.valid()) {

00160 std::string exprStr = named->expr ? named->expr->toString() : "<empty>";

00161 spdlog::info("{} .{}({})", indent, named->name.valueText(), exprStr);

00162 }

00163 } else if (conn->as_if<slang::syntax::EmptyPortConnectionSyntax>()) {

00164 spdlog::info("{} <empty connection>", indent);

00165 } else if (conn->as_if<slang::syntax::WildcardPortConnectionSyntax>()) {

00166 spdlog::info("{} .* (wildcard connection)", indent);

00167 } else {

00168 spdlog::info("{} Unknown connection type: {}", indent,

00169 slang::syntax::toString(conn->kind));

00170 }

00171 } catch (const std::exception &e) {

00172 spdlog::warn("{}Exception processing connection: {}", indent, e.what());

00173 } catch (...) {

00174 spdlog::warn("{}Unknown exception processing connection", indent);

00175 }

00176 }

00177 }

00178 } catch (const std::exception &e) {

00179 spdlog::warn("{}Exception while processing instances: {}", indent, e.what());

00180 }

00181

00182 // Continue processing child nodes

00183 depth_++;

00184 visitDefault(hierarchyInst);

00185 depth_--;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog_utils.cpp 273

00186 }

00187 }

00188 /*

00189 // Handle primitive gate instantiation

00190 void VerilogVisitor::handle(const slang::syntax::PrimitiveInstantiationSyntax &primitiveInst) {

00191 if (!inTargetModule_) {

00192 return;

00193 }

00194

00195 std::string indent(depth_ * 2, ' ');

00196

00197 // Get primitive gate type

00198 if (primitiveInst.type.valid()) {

00199 std::string_view gateType = primitiveInst.type.valueText();

00200 spdlog::info("{}Primitive Gate: {}", indent, gateType);

00201

00202 // Print delay information (if any)

00203 if (primitiveInst.delay) {

00204 spdlog::info("{}Delay: {}", indent, primitiveInst.delay->toString());

00205 }

00206

00207 // Print strength information (if any)

00208 if (primitiveInst.strength) {

00209 spdlog::info("{}Strength: {}", indent, primitiveInst.strength->toString());

00210 }

00211

00212 // Print each instance

00213 for (const auto &instance : primitiveInst.instances) {

00214 // Primitive gates usually don't have names, but if they do, print them

00215 if (instance->decl && instance->decl->name.valid()) {

00216 std::string_view instName = instance->decl->name.valueText();

00217 spdlog::info("{} Gate instance: {}", indent, instName);

00218 }

00219

00220 // Print connections

00221 spdlog::info("{} Gate connections:", indent);

00222 for (size_t i = 0; i < instance->connections.size(); ++i) {

00223 const auto &conn = instance->connections[i];

00224 // For gate-level instantiation, connections are usually ordered

00225 if (auto *ordered = conn->as_if<slang::syntax::OrderedPortConnectionSyntax>()) {

00226 if (ordered->expr) {

00227 // The first is usually the output, the rest are inputs

00228 std::string portType = (i == 0) ? "output" : "input";

00229 spdlog::info("{} {} {}: {}", indent, portType, i, ordered->expr->toString());

00230 }

00231 }

00232 }

00233 }

00234

00235 // Continue to traverse deeper when specific standard gate type

00236 // Create a set of safe standard gate types

00237 static const std::unordered_set<std::string_view> safeGateTypes = {

00238 "and", "or", "nand", "nor", "xor", "xnor", "not",

00239 "buf", "bufif0", "bufif1", "notif0", "notif1", "pullup", "pulldown",

00240 "cmos", "rcmos", "nmos", "pmos", "rnmos", "rpmos", "tran",

00241 "rtran", "tranif0", "tranif1", "rtranif0", "rtranif1"};

00242

00243 if (safeGateTypes.find(gateType) != safeGateTypes.end()) {

00244 // Continue processing child nodes

00245 depth_++;

00246 visitDefault(primitiveInst);

00247 depth_--;

00248 } else {

00249 spdlog::warn("{}Skipping deeper traversal of primitive: {}", indent, gateType);

00250 }

00251

00252 } else {

00253 spdlog::warn("{}Primitive instantiation missing gate type", indent);

00254 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

274 File Documentation

00255 }

00256 */

00257 // Handle specify block

00258 void VerilogVisitor::handle(const slang::syntax::SpecifyBlockSyntax &specifyBlock) {

00259 if (!inTargetModule_) {

00260 return;

00261 }

00262

00263 std::string indent(depth_ * 2, ' ');

00264 spdlog::info("{}Specify Block:", indent);

00265

00266 // Iterate through all path declarations

00267 for (const auto &item : specifyBlock.items) {

00268 if (auto *pathDecl = item->as_if<slang::syntax::PathDeclarationSyntax>()) {

00269 if (pathDecl->desc) {

00270 std::string pathSrc;

00271 std::string pathDst;

00272

00273 // Get path source

00274 if (!pathDecl->desc->inputs.empty()) {

00275 // Get the first input

00276 if (auto *identifier =

00277 pathDecl->desc->inputs[0]->as_if<slang::syntax::IdentifierNameSyntax>()) {

00278 if (identifier->identifier.valid()) {

00279 pathSrc = identifier->identifier.valueText();

00280 }

00281 }

00282 }

00283

00284 // Get path destination

00285 if (pathDecl->desc->suffix) {

00286 if (auto *simpleSuffix =

00287 pathDecl->desc->suffix->as_if<slang::syntax::SimplePathSuffixSyntax>()) {

00288 if (!simpleSuffix->outputs.empty()) {

00289 if (auto *identifier =

00290 simpleSuffix->outputs[0]->as_if<slang::syntax::IdentifierNameSyntax>()) {

00291 if (identifier->identifier.valid()) {

00292 pathDst = identifier->identifier.valueText();

00293 }

00294 }

00295 } else if (auto *edgeSuffix =

00296 pathDecl->desc->suffix

00297 ->as_if<slang::syntax::EdgeSensitivePathSuffixSyntax>()) {

00298 if (!edgeSuffix->outputs.empty()) {

00299 if (auto *identifier =

00300 edgeSuffix->outputs[0]->as_if<slang::syntax::IdentifierNameSyntax>()) {

00301 if (identifier->identifier.valid()) {

00302 pathDst = identifier->identifier.valueText();

00303 }

00304 }

00305 }

00306 }

00307 }

00308

00309 // Construct path string

00310 std::string pathStr = pathSrc + " => " + pathDst;

00311

00312 // Get path delay

00313 std::string delayStr = "(";

00314 for (size_t i = 0; i < pathDecl->delays.size(); ++i) {

00315 if (i > 0)

00316 delayStr += ", ";

00317 delayStr += pathDecl->delays[i]->toString();

00318 }

00319 delayStr += ")";

00320

00321 spdlog::info("{} Path: {} = {}", indent, pathStr, delayStr);

00322 }

00323 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog_utils.cpp 275

00324 // Can add handling for ConditionalPathDeclarationSyntax and IfNonePathDeclarationSyntax

00325 else if (auto *condPath = item->as_if<slang::syntax::ConditionalPathDeclarationSyntax>()) {

00326 if (condPath->path && condPath->predicate) {

00327 spdlog::info("{} Conditional Path (if {})", indent, condPath->predicate->toString());

00328 // Recursively handle internal path

00329 handle(*condPath->path);

00330 }

00331 } else if (auto *ifNonePath = item->as_if<slang::syntax::IfNonePathDeclarationSyntax>()) {

00332 if (ifNonePath->path) {

00333 spdlog::info("{} If-None Path", indent);

00334 // Recursively handle internal path

00335 handle(*ifNonePath->path);

00336 }

00337 }

00338 }

00339

00340 // Continue processing child nodes

00341 depth_++;

00342 visitDefault(specifyBlock);

00343 depth_--;

00344 }

00345 }

00346

00347 // Handle module declarations, only keep the target module

00348 void CellExtractor::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

00349 if (module.header && module.header->name.valid()) {

00350 std::string_view moduleName = module.header->name.valueText();

00351

00352 // If it is the target module, mark as found, otherwise remove it

00353 if (!targetCell_.empty() && moduleName == targetCell_) {

00354 foundTarget_ = true;

00355 // Do not modify, keep this module

00356 } else {

00357 // Remove non-target modules

00358 remove(module);

00359 }

00360 }

00361 }

00362

00363 // Get result

00364 bool CellExtractor::foundTargetCell()const { return foundTarget_; }

00365

00366 // Handle module declarations

00367 void CellPrinter::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

00368 if (module.header && module.header->name.valid()) {

00369 std::string_view moduleName = module.header->name.valueText();

00370

00371 // Check if it is the target module

00372 if (!targetCell_.empty() && moduleName == targetCell_) {

00373 foundTarget_ = true;

00374

00375 // Print module definition

00376 out_ << "`timescale 1ns/10ps\n";
00377 out_ << module.toString();

00378

00379 return; // Do not traverse further

00380 }

00381 }

00382

00383 // Continue traversing other modules

00384 visitDefault(module);

00385 }

00386

00396 void ModuleRewriter::handle(const slang::syntax::SyntaxNode &node) {

00397 std::string indent(depth_ * 2, ' ');

00398 logger_->debug("{}Node: {}", indent, slang::syntax::toString(node.kind));

00399

00400 // Continue processing child nodes

00401 depth_++;

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

276 File Documentation

00402 visitDefault(node);

00403 depth_--;

00404 }

00405

00406 void ModuleRewriter::handle(const slang::syntax::ModuleDeclarationSyntax &module) {

00407 logger_->debug("Processing module: {}", module.header->name.valueText());

00408

00409 // Create intermediate wires for connections between instances

00410 for (int i = 0; i < instance_count_ - 1; i++) {

00411 auto &newNetNode = parse("\n wire OP_" + std::to_string(i) + ";");

00412 insertAtBack(module.members, newNetNode);

00413 logger_->debug("Added intermediate wire: {}", newNetNode.toString());

00414 }

00415

00416 // Get critical input port & output port from

00417 // the module name pattern: CELLNAME__X#__CRITICALPORT__OUTPUTPORT

00418 std::string criticalInputPort = "";

00419 std::string criticalOutputPort = "";

00420 if (!this->moduleName_.empty()) {

00421 size_t firstSep = this->moduleName_.find("__");

00422 if (firstSep != std::string::npos) {

00423 size_t secondSep = this->moduleName_.find("__", firstSep + 2);

00424 if (secondSep != std::string::npos) {

00425 size_t thirdSep = this->moduleName_.find("__", secondSep + 2);

00426 if (thirdSep != std::string::npos) {

00427 criticalInputPort = this->moduleName_.substr(secondSep + 2, thirdSep - (secondSep + 2));

00428 criticalOutputPort = this->moduleName_.substr(thirdSep + 2);

00429 logger_->debug("Extracted critical input port: {}", criticalInputPort);

00430 logger_->debug("Extracted output port: {}", criticalOutputPort);

00431 } else {

00432 logger_->warn("Can't find thirdSep. Invalid module name pattern: {}", this->moduleName_);

00433 return;

00434 }

00435 } else {

00436 logger_->warn("Can't find secondSep. Invalid module name pattern: {}", this->moduleName_);

00437 return;

00438 }

00439 } else {

00440 logger_->warn("Can't find firstSep. Invalid module name pattern: {}", this->moduleName_);

00441 return;

00442 }

00443 } else {

00444 logger_->warn("Module name is empty. Can't extract critical input port.");

00445 return;

00446 }

00447

00448 // Add additional wires for intermediate outputs that aren't part of the chain

00449 if (this->outputPins_.size() > 1) { // Only add if there are multiple output pins

00450 for (int i = 0; i < instance_count_ - 1; i++) { // Skip the first and last instances

00451 for (const auto &outputPin : this->outputPins_) {

00452 if (outputPin != criticalOutputPort) { // Found an intermediate output pin

00453 auto &newNetNode = parse("\n wire P_" + std::to_string(i) + "__" + outputPin + ";");

00454 insertAtBack(module.members, newNetNode);

00455 logger_->debug("Added intermediate wire: {}", newNetNode.toString());

00456 }

00457 }

00458 }

00459 }

00460

00461 std::string portList_str = module.header->ports->toString();

00462 logger_->debug("Port list: {}", portList_str);

00463

00464 std::vector<std::string> allPorts;

00465 auto ansiPortList = module.header->ports->as_if<slang::syntax::AnsiPortListSyntax>();

00466 if (!ansiPortList) {

00467 logger_->warn("Port list is not ANSI style.");

00468 return;

00469 }

00470 portInfoMap_.clear(); // Clear the port info map

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

7.46 verilog_utils.cpp 277

00471 for (const auto portMember : ansiPortList->ports) {

00472 if (portMember->kind == slang::syntax::SyntaxKind::ImplicitAnsiPort) {

00473 const auto implicitPort = portMember->as_if<slang::syntax::ImplicitAnsiPortSyntax>();

00474 const auto &directionToken =

00475 implicitPort->header->as_if<slang::syntax::VariablePortHeaderSyntax>()->direction;

00476 const auto &nameToken = implicitPort->declarator->name;

00477

00478 std::string_view portName = nameToken.valueText();

00479 std::string_view direction = directionToken.valueText();

00480 portInfoMap_[std::string(portName)] = std::string(direction); // Store port info in the map

00481 logger_->debug("Port Name: {}, Direction: {}", portName, direction);

00482 } else {

00483 logger_->warn("Port member is not ImplicitAnsiPort.");

00484 }

00485 }

00486

00487 for (int i = 0; i < instance_count_; i++) {

00488 std::string instanceName = "I_" + this->cellName_ + "__X" + std::to_string(i) + "__" +

00489 criticalInputPort + "__" + criticalOutputPort;

00490 std::string instanceCode = "\n " + this->cellName_ + " " + instanceName + " (";

00491 std::vector<std::string> portConnections;

00492

00493 for (const auto &pair : portInfoMap_) {

00494 std::string portName = pair.first;

00495 std::string direction = pair.second;

00496 std::string connectionName;

00497

00498 if (portName == criticalInputPort) {

00499 if (i == 0) {

00500 connectionName = portName; // First instance: connect to module input port

00501 } else {

00502 connectionName =

00503 "OP_" + std::to_string(i - 1); // Intermediate instances: connect to previous OP wire

00504 }

00505 } else if (portName == criticalOutputPort) {

00506 if (i == instance_count_ - 1) {

00507 connectionName = portName; // Last instance: connect to module output port

00508 } else {

00509 connectionName = "OP_" + std::to_string(i); // Intermediate instances: connect to OP wire

00510 }

00511 } else if (direction == "output") { // Handle other output ports

00512 if (i < instance_count_ - 1) {

00513 connectionName = "P_" + std::to_string(i) + "__" +

00514 portName; // Connect to intermediate P_i__portName wire

00515 } else {

00516 connectionName = portName; // Last instance: connect to module output port

00517 }

00518 } else { // For input ports (and inout?), connect directly to module port

00519 connectionName = portName;

00520 }

00521 portConnections.push_back("." + portName + "(" + connectionName + ")");

00522 }

00523

00524 // Connect all ports with comma and space

00525 if (!portConnections.empty()) {

00526 instanceCode += portConnections[0];

00527 for (size_t i = 1; i < portConnections.size(); ++i) {

00528 instanceCode += ", " + portConnections[i];

00529 }

00530 }

00531 instanceCode += ");";

00532

00533 // Blank line before the first instance

00534 if (i == 0) {

00535 instanceCode = "\n" + instanceCode;

00536 }

00537

00538 // Insert the instance code

00539 auto &instanceNode = parse(instanceCode);

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

278 File Documentation

00540 insertAtBack(module.members, instanceNode);

00541 }

00542 }

00543

00544 void getAST(const std::string &verilog_file, const std::string &cell) {

00545 try {

00546 spdlog::info("Starting get AST from Verilog file: '{}'", verilog_file);

00547 auto result = slang::syntax::SyntaxTree::fromFile(verilog_file);

00548 if (result) {

00549 spdlog::info("Successfully parsed Verilog file.");

00550

00551 try {

00552 // First, use the visitor to print basic information

00553 VerilogVisitor visitor(cell);

00554 visitor.visit(result.value()->root());

00555

00556 // If a target cell is specified, use the rewriter to extract the relevant code

00557 if (!cell.empty()) {

00558 // Create a rewriter to only keep the target cell related code

00559 CellExtractor extractor(cell);

00560 auto extractedTree = extractor.transform(result.value());

00561

00562 if (extractor.foundTargetCell()) {

00563 // Use SyntaxPrinter to print the extracted code

00564 std::string extractedCode = slang::syntax::SyntaxPrinter::printFile(*extractedTree);

00565

00566 // Save to a file named after the cell name

00567 std::string outputFile = cell + ".v";

00568 std::ofstream cellOut(outputFile);

00569 if (cellOut) {

00570 cellOut << extractedCode;

00571 cellOut.close();

00572 spdlog::info("Extracted '{}' cell code to '{}'", cell, outputFile);

00573 } else {

00574 spdlog::error("Failed to write extracted cell code to '{}'", outputFile);

00575 }

00576 } else {

00577 spdlog::warn("Target cell '{}' not found in the Verilog file", cell);

00578 }

00579 }

00580

00581 // spdlog::info("Print full source code to 'full_source_code.v'");

00582 // // Optionally save the entire syntax tree

00583 // std::string fullOutput = slang::syntax::SyntaxPrinter::printFile(*result.value());

00584 // std::ofstream out("full_source_code.v");

00585 // out << fullOutput;

00586 // out.close();

00587

00588 spdlog::info("Print target cell code to 'cell_code.v using toString()'");

00589 // Use CellPrinter to print the target cell's code

00590 std::ofstream cellOut("cell_code.v");

00591 CellPrinter cellPrinter(cell, cellOut);

00592 cellPrinter.visit(result.value()->root());

00593 cellOut.close();

00594

00595 } catch (const std::exception &e) {

00596 spdlog::error("Exception during AST traversal: {}", e.what());

00597 } catch (...) {

00598 spdlog::error("Unknown exception during AST traversal");

00599 }

00600 } else {

00601 spdlog::error("Error parsing Verilog file.");

00602 }

00603 } catch (const std::exception &e) {

00604 spdlog::error("Exception during Verilog parsing: {}", e.what());

00605 } catch (...) {

00606 spdlog::error("Unknown exception during Verilog parsing");

00607 }

00608 }

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

索引

∼AttributesIterator
AttributesIterator, 32

∼GroupsIterator
GroupsIterator, 41

∼LibAttribute
LibAttribute, 44

∼LibFile
LibFile, 50

∼LibGroup
LibGroup, 73

∼ValuesIterator
ValuesIterator, 116

abstol_
LibraryComparator, 84

all_pin_results_
LogicComparator, 95

APP_AUTHOR
version.h, 171

APP_CONTACT
version.h, 171

APP_NAME
version.h, 172

APP_VERSION
version.h, 172

APP_VERSION_MAJOR
version.h, 172

APP_VERSION_MINOR
version.h, 172

APP_VERSION_PATCH
version.h, 172

are_equivalent
PinComparisonResult, 113

attr_
AttributesIterator, 33
LibAttribute, 48

AttributesIterator, 31
∼AttributesIterator, 32
attr_, 33
AttributesIterator, 31
attrs_, 33
end, 32
err_, 34
get, 32
next, 33

attrs_
AttributesIterator, 33

basename_
LibFile, 69

bool_
ValuesIterator, 118

BUILD_TIMESTAMP
version.h, 173

cell_name_
LogicComparator, 95

CellExtractor, 34
CellExtractor, 35
foundTarget_, 36
foundTargetCell, 36
handle, 36
targetCell_, 36

cellName_
ModuleRewriter, 111

CellPrinter, 37
CellPrinter, 38
foundTarget_, 39
handle, 38
out_, 39
targetCell_, 39

checkTimingArcMonotonicity
LibFile, 51

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

280 索引

comp_compiles
PinComparisonResult, 113

comp_expr_processed
PinComparisonResult, 113

comp_expr_raw
PinComparisonResult, 114

comp_json_
LibraryComparator, 84

comp_lib_path_
LibraryComparator, 84

comp_outpin_map_
LogicComparator, 95

comp_truth_table
PinComparisonResult, 114

compareCell
LibraryComparator, 78

compareCellLogic
LogicComparator, 86

compareLibFiles
LibFileOperations.cpp, 208
LibFileOperations.hpp, 142

compareLut
LibraryComparator, 79

comparePin
LibraryComparator, 80

compareSingleExpressionPair
LogicComparator, 88

compareTimingArc
LibraryComparator, 81

comparison_possible
PinComparisonResult, 114

depth_
ModuleRewriter, 111
VerilogVisitor, 122

deriveLogicRecursive
LogicExtractor, 98

doc/ChangeLog.md, 125

end
AttributesIterator, 32
GroupsIterator, 42
ValuesIterator, 117

err_

AttributesIterator, 34
GroupsIterator, 43
LibAttribute, 48
LibFile, 69
LibGroup, 75
ValuesIterator, 118

error_message
PinComparisonResult, 114

exprp_
ValuesIterator, 118

extractAndPrintNetlistInfo
LogicExtractor.cpp, 250
LogicExtractor.hpp, 164

extractLogicFromVerilog
LogicExtractor.cpp, 251
LogicExtractor.hpp, 165

extractVariables
LogicComparator, 89

filename_
LibFile, 70

filepath_
LibFile, 70

float_
ValuesIterator, 118

formatExpression
LogicExtractor, 100

foundTarget_
CellExtractor, 36
CellPrinter, 39

foundTargetCell
CellExtractor, 36

funcLibFile
LibFileOperations.cpp, 209
LibFileOperations.hpp, 144

GateInfo, 39
gateTypeName, 40
inputSignals, 40
kind, 40
outputSignal, 40

gateOutputDrivers_
LogicExtractor, 106

gateTypeName

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

索引 281

GateInfo, 40
generateCellJson

json_utils.cpp, 176
json_utils.hpp, 129

generateLutJson
json_utils.cpp, 177
json_utils.hpp, 130

generatePinJson
json_utils.cpp, 179
json_utils.hpp, 132

generatePowerJson
json_utils.cpp, 182
json_utils.hpp, 135

generateRCLines
LibFile, 52

generateReport
LibraryComparator, 83
LogicComparator, 91

generateTimingJson
json_utils.cpp, 183

get
AttributesIterator, 32
GroupsIterator, 42

getAST
verilog_utils.cpp, 269
verilog_utils.hpp, 169

getAttrs
LibGroup, 73

getBoolean
LibAttribute, 45

getExtractedGates
LogicExtractor, 100

getFloat
LibAttribute, 45

getGroups
LibGroup, 73

getInt
LibAttribute, 45

getInternalWires
LogicExtractor, 101

getLogicExpressions
LogicExtractor, 101

getName

LibAttribute, 46
LibGroup, 74

getPrimaryInputs
LogicExtractor, 102

getPrimaryOutputs
LogicExtractor, 102

getString
LibAttribute, 46

getType
LibGroup, 74

getValues
LibAttribute, 47

group_
GroupsIterator, 43
LibGroup, 75

groups_
GroupsIterator, 43

GroupsIterator, 41
∼GroupsIterator, 41
end, 42
err_, 43
get, 42
group_, 43
groups_, 43
GroupsIterator, 41
next, 42

handle
CellExtractor, 36
CellPrinter, 38
LogicExtractor, 103–106
ModuleRewriter, 110
VerilogVisitor, 121, 122

include/Iterators.hpp, 125, 126
include/json_utils.hpp, 127, 136
include/LibAttribute.hpp, 137, 138
include/LibFile.hpp, 139, 140
include/LibFileOperations.hpp, 141, 156
include/LibGroup.hpp, 157, 158
include/LibraryComparator.hpp, 159, 160
include/LogicComparator.hpp, 161, 162
include/LogicExtractor.hpp, 163, 166
include/verilog_utils.hpp, 168, 169

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

282 索引

include/version.h, 171, 173
inputPins_

ModuleRewriter, 111
inputSignals

GateInfo, 40
instance_count_

ModuleRewriter, 111
int_

ValuesIterator, 118
inTargetModule_

LogicExtractor, 106
VerilogVisitor, 123

internalWires_
LogicExtractor, 107

isComplex
LibAttribute, 47

isIdentifier
LogicComparator.cpp, 234

isOperator
LogicComparator.cpp, 234

json
json_utils.hpp, 128
LibFile.hpp, 140
LibraryComparator.hpp, 160

json_utils.cpp
generateCellJson, 176
generateLutJson, 177
generatePinJson, 179
generatePowerJson, 182
generateTimingJson, 183
parseStringToVector, 185

json_utils.hpp
generateCellJson, 129
generateLutJson, 130
generatePinJson, 132
generatePowerJson, 135
json, 128

jsonname_
LibFile, 70

kind
GateInfo, 40

lib_json_
LibFile, 70

LibAttribute, 44
∼LibAttribute, 44
attr_, 48
err_, 48
getBoolean, 45
getFloat, 45
getInt, 45
getName, 46
getString, 46
getValues, 47
isComplex, 47
LibAttribute, 44

LibFile, 48
∼LibFile, 50
basename_, 69
checkTimingArcMonotonicity, 51
err_, 69
filename_, 70
filepath_, 70
generateRCLines, 52
jsonname_, 70
lib_json_, 70
LibFile, 50
libname_, 70
logger_, 71
loggername_, 71
logic, 53
modify, 55
modifySpiceNetlist, 55
mono, 56
parse, 58
process_, 71
read, 61
spice, 62
splitString, 64
supercell, 64
temperature_, 71
verilog, 67
voltage_, 71
writeJsonToFile, 68

LibFile.hpp

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

索引 283

json, 140
LibFileOperations.cpp

compareLibFiles, 208
funcLibFile, 209
monoCheckLibFile, 211
parseLibFile, 213
printInfo, 216
spiceLibFile, 216
supercellLibFile, 218
verilogLibFile, 220

LibFileOperations.hpp
compareLibFiles, 142
funcLibFile, 144
monoCheckLibFile, 146
parseLibFile, 147
printInfo, 150
spiceLibFile, 150
supercellLibFile, 152
verilogLibFile, 154

LibGroup, 72
∼LibGroup, 73
err_, 75
getAttrs, 73
getGroups, 73
getName, 74
getType, 74
group_, 75
LibGroup, 72

libname_
LibFile, 70

LibraryComparator, 75
abstol_, 84
comp_json_, 84
comp_lib_path_, 84
compareCell, 78
compareLut, 79
comparePin, 80
compareTimingArc, 81
generateReport, 83
LibraryComparator, 77
ref_json_, 84
ref_lib_path_, 84
reltol_, 85

LibraryComparator.hpp
json, 160

logger_
LibFile, 71
ModuleRewriter, 111

loggername_
LibFile, 71

logic
LibFile, 53
LogicComparator, 93

logicCache_
LogicExtractor, 107

LogicComparator, 85
all_pin_results_, 95
cell_name_, 95
comp_outpin_map_, 95
compareCellLogic, 86
compareSingleExpressionPair, 88
extractVariables, 89
generateReport, 91
logic, 93
LogicComparator, 86
preprocessExpression, 93
ref_outpin_map_, 96

LogicComparator.cpp
isIdentifier, 234
isOperator, 234

LogicExtractor, 96
deriveLogicRecursive, 98
formatExpression, 100
gateOutputDrivers_, 106
getExtractedGates, 100
getInternalWires, 101
getLogicExpressions, 101
getPrimaryInputs, 102
getPrimaryOutputs, 102
handle, 103–106
inTargetModule_, 106
internalWires_, 107
logicCache_, 107
LogicExtractor, 98
parsingComplete_, 107
portDirections_, 107

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

284 索引

primaryInputs_, 107
primaryOutputs_, 108
targetCell_, 108

LogicExtractor.cpp
extractAndPrintNetlistInfo, 250
extractLogicFromVerilog, 251

LogicExtractor.hpp
extractAndPrintNetlistInfo, 164
extractLogicFromVerilog, 165

main
main.cpp, 263

main.cpp
main, 263

modify
LibFile, 55

modifySpiceNetlist
LibFile, 55

moduleName_
ModuleRewriter, 112

ModuleRewriter, 108
cellName_, 111
depth_, 111
handle, 110
inputPins_, 111
instance_count_, 111
logger_, 111
moduleName_, 112
ModuleRewriter, 110
outputPins_, 112
portInfoMap_, 112

mono
LibFile, 56

monoCheckLibFile
LibFileOperations.cpp, 211
LibFileOperations.hpp, 146

next
AttributesIterator, 33
GroupsIterator, 42
ValuesIterator, 117

out_
CellPrinter, 39

outputPins_
ModuleRewriter, 112

outputSignal
GateInfo, 40

parse
LibFile, 58

parseLibFile
LibFileOperations.cpp, 213
LibFileOperations.hpp, 147

parseStringToVector
json_utils.cpp, 185

parsingComplete_
LogicExtractor, 107

pin_name
PinComparisonResult, 114

PinComparisonResult, 112
are_equivalent, 113
comp_compiles, 113
comp_expr_processed, 113
comp_expr_raw, 114
comp_truth_table, 114
comparison_possible, 114
error_message, 114
pin_name, 114
ref_compiles, 115
ref_expr_processed, 115
ref_expr_raw, 115
ref_truth_table, 115

portDirections_
LogicExtractor, 107

portInfoMap_
ModuleRewriter, 112

preprocessExpression
LogicComparator, 93

primaryInputs_
LogicExtractor, 107

primaryOutputs_
LogicExtractor, 108

printInfo
LibFileOperations.cpp, 216
LibFileOperations.hpp, 150

process_

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

索引 285

LibFile, 71

read
LibFile, 61

README.md, 174
ref_compiles

PinComparisonResult, 115
ref_expr_processed

PinComparisonResult, 115
ref_expr_raw

PinComparisonResult, 115
ref_json_

LibraryComparator, 84
ref_lib_path_

LibraryComparator, 84
ref_outpin_map_

LogicComparator, 96
ref_truth_table

PinComparisonResult, 115
reltol_

LibraryComparator, 85

spice
LibFile, 62

spiceLibFile
LibFileOperations.cpp, 216
LibFileOperations.hpp, 150

splitString
LibFile, 64

src/Iterators.cpp, 174
src/json_utils.cpp, 175, 186
src/LibAtrribute.cpp, 189
src/LibFile.cpp, 190
src/LibFileOperations.cpp, 207, 222
src/LibGroup.cpp, 227
src/LibraryComparator.cpp, 228
src/LogicComparator.cpp, 233, 235
src/LogicExtractor.cpp, 250, 252
src/main.cpp, 261, 264
src/verilog_utils.cpp, 269, 270
str_

ValuesIterator, 118
supercell

LibFile, 64

supercellLibFile
LibFileOperations.cpp, 218
LibFileOperations.hpp, 152

targetCell_
CellExtractor, 36
CellPrinter, 39
LogicExtractor, 108
VerilogVisitor, 123

temperature_
LibFile, 71

values_
ValuesIterator, 119

ValuesIterator, 116
∼ValuesIterator, 116
bool_, 118
end, 117
err_, 118
exprp_, 118
float_, 118
int_, 118
next, 117
str_, 118
values_, 119
ValuesIterator, 116
vtype_, 119

verilog
LibFile, 67

verilog_utils.cpp
getAST, 269

verilog_utils.hpp
getAST, 169

verilogLibFile
LibFileOperations.cpp, 220
LibFileOperations.hpp, 154

VerilogVisitor, 119
depth_, 122
handle, 121, 122
inTargetModule_, 123
targetCell_, 123
VerilogVisitor, 120

version.h
APP_AUTHOR, 171

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

286 索引

APP_CONTACT, 171
APP_NAME, 172
APP_VERSION, 172
APP_VERSION_MAJOR, 172
APP_VERSION_MINOR, 172
APP_VERSION_PATCH, 172
BUILD_TIMESTAMP, 173

voltage_
LibFile, 71

vtype_
ValuesIterator, 119

writeJsonToFile
LibFile, 68

Generated on Tue Apr 15 2025 20:55:05 for ZlibValidation by Doxygen

	1 ZlibValidation
	1.1 Description
	1.2 Table of Contents
	1.3 Motivation
	1.4 Installation
	1.4.1 Prerequisites
	1.4.2 Optional Pre-requisites
	1.4.3 Building from Source (Recommended Method)
	1.4.4 Running ZlibValidation
	1.4.5 (Optional) Adding to your PATH

	1.5 Help Message / Features
	1.6 Example Usage
	1.7 Documentation and Reference Manual
	1.7.1 Doumentation Generation

	1.8 Acknowledgements
	1.8.1 Core Functionality Libraries:
	1.8.2 Build, Documentation, and External Tools:

	2 Development Diary
	2.1 2025-01
	2.1.1 2025-01-27
	2.1.2 2025-01-28

	2.2 2025-02
	2.2.1 2025-02-01
	2.2.2 2025-02-10
	2.2.3 2025-02-11
	2.2.4 2025-02-14
	2.2.5 2025-02-15
	2.2.6 2025-02-17
	2.2.7 2025-02-18
	2.2.8 2025-02-19
	2.2.9 2025-02-20
	2.2.10 2025-02-25
	2.2.11 2025-02-26
	2.2.12 2025-02-27
	2.2.13 2025-02-28

	2.3 2025-03
	2.3.1 2025-03-01
	2.3.2 2025-03-07
	2.3.3 2025-03-10
	2.3.4 2025-03-14
	2.3.5 2025-03-15
	2.3.6 2025-03-16
	2.3.7 2025-03-17
	2.3.8 2025-03-18
	2.3.9 2025-03-19
	2.3.10 2025-03-21
	2.3.11 2025-03-24
	2.3.12 2025-03-25
	2.3.13 2025-03-26
	2.3.14 2025-03-27
	2.3.15 2025-03-28
	2.3.16 2025-03-29
	2.3.17 2025-03-30
	2.3.18 2025-03-31

	2.4 2025-04
	2.4.1 2025-04-01
	2.4.2 2025-04-02
	2.4.3 2025-04-05
	2.4.4 2025-04-07
	2.4.5 2025-04-10
	2.4.6 2025-04-15

	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 File Index
	5.1 File List

	6 Class Documentation
	6.1 AttributesIterator Class Reference
	6.1.1 Detailed Description
	6.1.2 Constructor & Destructor Documentation
	6.1.2.1 AttributesIterator()
	6.1.2.2 AttributesIterator()

	6.1.3 Member Function Documentation
	6.1.3.1 end()
	6.1.3.2 get()
	6.1.3.3 next()

	6.1.4 Member Data Documentation
	6.1.4.1 attr_
	6.1.4.2 attrs_
	6.1.4.3 err_

	6.2 CellExtractor Class Reference
	6.2.1 Detailed Description
	6.2.2 Constructor & Destructor Documentation
	6.2.2.1 CellExtractor()

	6.2.3 Member Function Documentation
	6.2.3.1 foundTargetCell()
	6.2.3.2 handle()

	6.2.4 Member Data Documentation
	6.2.4.1 foundTarget_
	6.2.4.2 targetCell_

	6.3 CellPrinter Class Reference
	6.3.1 Detailed Description
	6.3.2 Constructor & Destructor Documentation
	6.3.2.1 CellPrinter()

	6.3.3 Member Function Documentation
	6.3.3.1 handle()

	6.3.4 Member Data Documentation
	6.3.4.1 foundTarget_
	6.3.4.2 out_
	6.3.4.3 targetCell_

	6.4 GateInfo Struct Reference
	6.4.1 Detailed Description
	6.4.2 Member Data Documentation
	6.4.2.1 gateTypeName
	6.4.2.2 inputSignals
	6.4.2.3 kind
	6.4.2.4 outputSignal

	6.5 GroupsIterator Class Reference
	6.5.1 Detailed Description
	6.5.2 Constructor & Destructor Documentation
	6.5.2.1 GroupsIterator()
	6.5.2.2 GroupsIterator()

	6.5.3 Member Function Documentation
	6.5.3.1 end()
	6.5.3.2 get()
	6.5.3.3 next()

	6.5.4 Member Data Documentation
	6.5.4.1 err_
	6.5.4.2 group_
	6.5.4.3 groups_

	6.6 LibAttribute Class Reference
	6.6.1 Detailed Description
	6.6.2 Constructor & Destructor Documentation
	6.6.2.1 LibAttribute()
	6.6.2.2 LibAttribute()

	6.6.3 Member Function Documentation
	6.6.3.1 getBoolean()
	6.6.3.2 getFloat()
	6.6.3.3 getInt()
	6.6.3.4 getName()
	6.6.3.5 getString()
	6.6.3.6 getValues()
	6.6.3.7 isComplex()

	6.6.4 Member Data Documentation
	6.6.4.1 attr_
	6.6.4.2 err_

	6.7 LibFile Class Reference
	6.7.1 Detailed Description
	6.7.2 Constructor & Destructor Documentation
	6.7.2.1 LibFile()
	6.7.2.2 LibFile()

	6.7.3 Member Function Documentation
	6.7.3.1 checkTimingArcMonotonicity()
	6.7.3.2 generateRCLines()
	6.7.3.3 logic()
	6.7.3.4 modify()
	6.7.3.5 modifySpiceNetlist()
	6.7.3.6 mono()
	6.7.3.7 parse()
	6.7.3.8 read()
	6.7.3.9 spice()
	6.7.3.10 splitString()
	6.7.3.11 supercell()
	6.7.3.12 verilog()
	6.7.3.13 writeJsonToFile()

	6.7.4 Member Data Documentation
	6.7.4.1 basename_
	6.7.4.2 err_
	6.7.4.3 filename_
	6.7.4.4 filepath_
	6.7.4.5 jsonname_
	6.7.4.6 lib_json_
	6.7.4.7 libname_
	6.7.4.8 logger_
	6.7.4.9 loggername_
	6.7.4.10 process_
	6.7.4.11 temperature_
	6.7.4.12 voltage_

	6.8 LibGroup Class Reference
	6.8.1 Detailed Description
	6.8.2 Constructor & Destructor Documentation
	6.8.2.1 LibGroup()
	6.8.2.2 LibGroup()

	6.8.3 Member Function Documentation
	6.8.3.1 getAttrs()
	6.8.3.2 getGroups()
	6.8.3.3 getName()
	6.8.3.4 getType()

	6.8.4 Member Data Documentation
	6.8.4.1 err_
	6.8.4.2 group_

	6.9 LibraryComparator Class Reference
	6.9.1 Detailed Description
	6.9.2 Constructor & Destructor Documentation
	6.9.2.1 LibraryComparator()

	6.9.3 Member Function Documentation
	6.9.3.1 compareCell()
	6.9.3.2 compareLut()
	6.9.3.3 comparePin()
	6.9.3.4 compareTimingArc()
	6.9.3.5 generateReport()

	6.9.4 Member Data Documentation
	6.9.4.1 abstol_
	6.9.4.2 comp_json_
	6.9.4.3 comp_lib_path_
	6.9.4.4 ref_json_
	6.9.4.5 ref_lib_path_
	6.9.4.6 reltol_

	6.10 LogicComparator Class Reference
	6.10.1 Detailed Description
	6.10.2 Constructor & Destructor Documentation
	6.10.2.1 LogicComparator()

	6.10.3 Member Function Documentation
	6.10.3.1 compareCellLogic()
	6.10.3.2 compareSingleExpressionPair()
	6.10.3.3 extractVariables()
	6.10.3.4 generateReport()
	6.10.3.5 logic()
	6.10.3.6 preprocessExpression()

	6.10.4 Member Data Documentation
	6.10.4.1 all_pin_results_
	6.10.4.2 cell_name_
	6.10.4.3 comp_outpin_map_
	6.10.4.4 ref_outpin_map_

	6.11 LogicExtractor Class Reference
	6.11.1 Detailed Description
	6.11.2 Constructor & Destructor Documentation
	6.11.2.1 LogicExtractor()

	6.11.3 Member Function Documentation
	6.11.3.1 deriveLogicRecursive()
	6.11.3.2 formatExpression()
	6.11.3.3 getExtractedGates()
	6.11.3.4 getInternalWires()
	6.11.3.5 getLogicExpressions()
	6.11.3.6 getPrimaryInputs()
	6.11.3.7 getPrimaryOutputs()
	6.11.3.8 handle() [1/5]
	6.11.3.9 handle() [2/5]
	6.11.3.10 handle() [3/5]
	6.11.3.11 handle() [4/5]
	6.11.3.12 handle() [5/5]

	6.11.4 Member Data Documentation
	6.11.4.1 gateOutputDrivers_
	6.11.4.2 inTargetModule_
	6.11.4.3 internalWires_
	6.11.4.4 logicCache_
	6.11.4.5 parsingComplete_
	6.11.4.6 portDirections_
	6.11.4.7 primaryInputs_
	6.11.4.8 primaryOutputs_
	6.11.4.9 targetCell_

	6.12 ModuleRewriter Class Reference
	6.12.1 Detailed Description
	6.12.2 Constructor & Destructor Documentation
	6.12.2.1 ModuleRewriter()

	6.12.3 Member Function Documentation
	6.12.3.1 handle() [1/2]
	6.12.3.2 handle() [2/2]

	6.12.4 Member Data Documentation
	6.12.4.1 cellName_
	6.12.4.2 depth_
	6.12.4.3 inputPins_
	6.12.4.4 instance_count_
	6.12.4.5 logger_
	6.12.4.6 moduleName_
	6.12.4.7 outputPins_
	6.12.4.8 portInfoMap_

	6.13 PinComparisonResult Struct Reference
	6.13.1 Detailed Description
	6.13.2 Member Data Documentation
	6.13.2.1 are_equivalent
	6.13.2.2 comp_compiles
	6.13.2.3 comp_expr_processed
	6.13.2.4 comp_expr_raw
	6.13.2.5 comp_truth_table
	6.13.2.6 comparison_possible
	6.13.2.7 error_message
	6.13.2.8 pin_name
	6.13.2.9 ref_compiles
	6.13.2.10 ref_expr_processed
	6.13.2.11 ref_expr_raw
	6.13.2.12 ref_truth_table

	6.14 ValuesIterator Class Reference
	6.14.1 Detailed Description
	6.14.2 Constructor & Destructor Documentation
	6.14.2.1 ValuesIterator()
	6.14.2.2 ValuesIterator()

	6.14.3 Member Function Documentation
	6.14.3.1 end()
	6.14.3.2 next()

	6.14.4 Member Data Documentation
	6.14.4.1 bool_
	6.14.4.2 err_
	6.14.4.3 exprp_
	6.14.4.4 float_
	6.14.4.5 int_
	6.14.4.6 str_
	6.14.4.7 values_
	6.14.4.8 vtype_

	6.15 VerilogVisitor Class Reference
	6.15.1 Detailed Description
	6.15.2 Constructor & Destructor Documentation
	6.15.2.1 VerilogVisitor()

	6.15.3 Member Function Documentation
	6.15.3.1 handle() [1/5]
	6.15.3.2 handle() [2/5]
	6.15.3.3 handle() [3/5]
	6.15.3.4 handle() [4/5]
	6.15.3.5 handle() [5/5]

	6.15.4 Member Data Documentation
	6.15.4.1 depth_
	6.15.4.2 inTargetModule_
	6.15.4.3 targetCell_

	7 File Documentation
	7.1 doc/ChangeLog.md File Reference
	7.2 include/Iterators.hpp File Reference
	7.3 Iterators.hpp
	7.4 include/json_utils.hpp File Reference
	7.4.1 Typedef Documentation
	7.4.1.1 json

	7.4.2 Function Documentation
	7.4.2.1 generateCellJson()
	7.4.2.2 generateLutJson()
	7.4.2.3 generatePinJson()
	7.4.2.4 generatePowerJson()

	7.5 json_utils.hpp
	7.6 include/LibAttribute.hpp File Reference
	7.7 LibAttribute.hpp
	7.8 include/LibFile.hpp File Reference
	7.8.1 Typedef Documentation
	7.8.1.1 json

	7.9 LibFile.hpp
	7.10 include/LibFileOperations.hpp File Reference
	7.10.1 Function Documentation
	7.10.1.1 compareLibFiles()
	7.10.1.2 funcLibFile()
	7.10.1.3 monoCheckLibFile()
	7.10.1.4 parseLibFile()
	7.10.1.5 printInfo()
	7.10.1.6 spiceLibFile()
	7.10.1.7 supercellLibFile()
	7.10.1.8 verilogLibFile()

	7.11 LibFileOperations.hpp
	7.12 include/LibGroup.hpp File Reference
	7.13 LibGroup.hpp
	7.14 include/LibraryComparator.hpp File Reference
	7.14.1 Typedef Documentation
	7.14.1.1 json

	7.15 LibraryComparator.hpp
	7.16 include/LogicComparator.hpp File Reference
	7.17 LogicComparator.hpp
	7.18 include/LogicExtractor.hpp File Reference
	7.18.1 Function Documentation
	7.18.1.1 extractAndPrintNetlistInfo()
	7.18.1.2 extractLogicFromVerilog()

	7.19 LogicExtractor.hpp
	7.20 include/verilog_utils.hpp File Reference
	7.20.1 Function Documentation
	7.20.1.1 getAST()

	7.21 verilog_utils.hpp
	7.22 include/version.h File Reference
	7.22.1 Macro Definition Documentation
	7.22.1.1 APP_AUTHOR
	7.22.1.2 APP_CONTACT
	7.22.1.3 APP_NAME
	7.22.1.4 APP_VERSION
	7.22.1.5 APP_VERSION_MAJOR
	7.22.1.6 APP_VERSION_MINOR
	7.22.1.7 APP_VERSION_PATCH
	7.22.1.8 BUILD_TIMESTAMP

	7.23 version.h
	7.24 README.md File Reference
	7.25 src/Iterators.cpp File Reference
	7.26 Iterators.cpp
	7.27 src/json_utils.cpp File Reference
	7.27.1 Function Documentation
	7.27.1.1 generateCellJson()
	7.27.1.2 generateLutJson()
	7.27.1.3 generatePinJson()
	7.27.1.4 generatePowerJson()
	7.27.1.5 generateTimingJson()
	7.27.1.6 parseStringToVector()

	7.28 json_utils.cpp
	7.29 src/LibAtrribute.cpp File Reference
	7.30 LibAtrribute.cpp
	7.31 src/LibFile.cpp File Reference
	7.32 LibFile.cpp
	7.33 src/LibFileOperations.cpp File Reference
	7.33.1 Function Documentation
	7.33.1.1 compareLibFiles()
	7.33.1.2 funcLibFile()
	7.33.1.3 monoCheckLibFile()
	7.33.1.4 parseLibFile()
	7.33.1.5 printInfo()
	7.33.1.6 spiceLibFile()
	7.33.1.7 supercellLibFile()
	7.33.1.8 verilogLibFile()

	7.34 LibFileOperations.cpp
	7.35 src/LibGroup.cpp File Reference
	7.36 LibGroup.cpp
	7.37 src/LibraryComparator.cpp File Reference
	7.38 LibraryComparator.cpp
	7.39 src/LogicComparator.cpp File Reference
	7.39.1 Function Documentation
	7.39.1.1 isIdentifier()
	7.39.1.2 isOperator()

	7.40 LogicComparator.cpp
	7.41 src/LogicExtractor.cpp File Reference
	7.41.1 Function Documentation
	7.41.1.1 extractAndPrintNetlistInfo()
	7.41.1.2 extractLogicFromVerilog()

	7.42 LogicExtractor.cpp
	7.43 src/main.cpp File Reference
	7.43.1 Detailed Description
	7.43.2 Function Documentation
	7.43.2.1 main()

	7.44 main.cpp
	7.45 src/verilog_utils.cpp File Reference
	7.45.1 Function Documentation
	7.45.1.1 getAST()

	7.46 verilog_utils.cpp

	索引

